目 录

一.概述1
1.1 显示
1.3 测试频率和测试速度1 1.4 电路模式1 1.5 测试信号源1
1.6 归零
1.8 精度
二.绪论
2.1 前言
三.使用5
3.1 使用常识53.1.1 开机53.1.2 自检5
3.1.3 归零
3.2.1 测试插座说明
3.3 精度
3.4.1 法则
3.4.3 电感或电容的等效串联电阻
四.测试原理9
4.1 仪器特点
4.4 数字部分框图

一. 概 述

1.1 显示

测量分别显示 L、Q;C、D;R、Q;第一显示窗以五位数字显示 L、C、R,第二显示窗以四位数字显示 D、Q。

1.2 测量范围

第一显示窗

第二显示窗

R:1KHz 0.0001~9.9999M D:(和 C 对应):0.0001~9.999

R:120Hz(100Hz) 0.0001~99.999M Q:(和 R 对应):0.0001~9.999

L:1KHz 0.01 µ H~999.99H Q:(和 L 对应):0.01~999.9

 $L:120Hz(100Hz)0.0001mH\sim9999.9H$

C:1KHz $0.1pF \sim 999.99 \mu F$

C: $120 \text{Hz} (100 \text{Hz}) 0.001 \text{nF} \sim 99999 \mu \text{ F}$

1. 3 测量频率和测试速度

通常测试频率 100Hz/1KHz(1000Hz),也可以定为 120Hz/1KHz(1020Hz)(这由用户具体要求而定),测试速度为每秒三次.

1.4 电路模式(串联、并联)

这指 R、L 或 C 的串联等效或并联等效计算,这由相应功能键来选择(详见面板说明).

1.5 测试信号源

测试电压的有效值为 0.25V,电流最大值根据不同档位限制在 25mA, 0.25mA, 2.5mA, 2.5

1.6 归零

测量治(夹)具或测试线短接后,按归零键(见面板图),这样可以扣除其中的串联电阻或电感.

测量治具(夹具)开路后,按归零键(见面板图),这样可以扣除测量治具(夹具)电缆线的分布电容.

1.7 电源

90~125V(110V 供电)、180~250V(220V 供电),根据供电电压,转换后盖板上转换开关,功耗 40W~50W.

1.8 精度

在通常档位, \mathbf{R} 、L、C及 ESR(串联电阻)的测量精度为±0.2%,测量 R的 Q值: ±0.001;测量 L的 Q值: ±0.01;测量 C的 D值: ±0.0005;所谓通常档位,指 D 《1,具体说明如下:

当 ZL ≤ ZX ≤ ZH → LCR: 0.2% DQ 精度: 0.25%

 $Zx \langle ZL \rightarrow LCR: (ZL/Zx) \times 0.2\%$ DQ 精度: (ZL/Zx) $\times 0.25\%$ Zx $\langle ZH \rightarrow LCR: (Zx/ZH) \times 0.2\%$ DQ 精度: (Zx/ZH) $\times 0.25\%$

这里 Zx:被测件阻抗

ZL:某一档位下限 ZH:某一档位上限

ZL ,ZH	R	L	C
120Hz	2Ω , $2M\Omega$	2mH,2000H	2nf,2000μF
1K Hz	2Ω , $2M\Omega$	0.2mH,200H	0.2nF,200µF

1.9 环境

温度:使用: 0~50℃之间,-40~75℃贮存.

湿度:0~85% R.H.之间使用.

二. 绪 论

2.1 前言

该系列 LCR 阻抗测试仪使用方便,精心的设计及高可靠的元器件确保了仪器测试速度、精度及可靠性.

强有力的归零功能使您运用自如.

仪器有 3 个档位供你选择,面板 BNC 插座供四端点测试.

2.2 控制键、部件及连接

图 2.1 是仪器面板的控制键及部件,由表 2.1 叙述了它的功能和名称,图 2.2 是后盖板图,由表 2.2 具体描述.

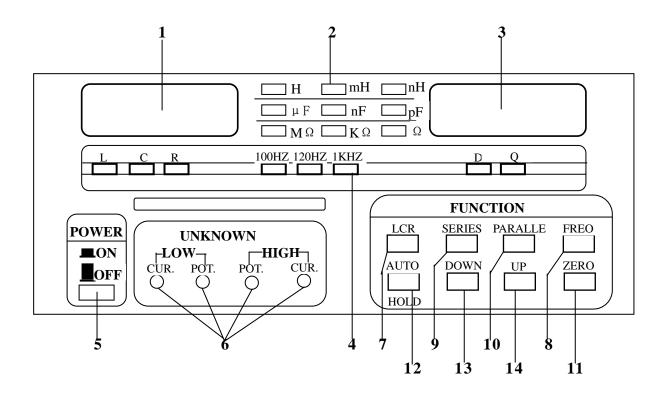


图 2.1:DL100 面板示意图

概 述 能 功 1 LCR显示窗 6位数码显示,和 显示测量值 (见 1.1 及 1.2 说明) L,C,R 光点指示配合使用. 测量值的单位 显示测量值和 2 $R:M\Omega,K\Omega,\Omega$ ESR(串联电阻) C: µF, nF, pF 的单位. L:H, mH, µH 测量C显示D值 显示窗 3 测量 L 或 R 显示 Q 值. D 或 Q 相应光点亮, 表示选中该参量 测试中选择 1KHz、120Hz, 频率显示 4 1KHz, 100Hz

5	电源开关 推推开关(反复推 完成开和关)	在 ON 状态下为接通电源, 在 OFF 状态下为切断电源, 状态见按键上下的黑白标志.
6	BNC 插座 共四个连接端	用于连接测试线或相应 治具(夹具)
7	L,C,R 转换键 (见序号 1 说明)	选择 R,L,C 的测量,相应 光点亮表示选中该参量
8	频率键(见序号4说明)	选择测试信号的频率
9	串联选择键,按该键 LED 亮, 表示选中串联测试模式.	被测件参量用等效串联 模式加以计算
10	并联选择键,按该键 LED 亮 表示选中并联测量模式	被测件用并联模式加以计算
11	归零键 按该键 LED 亮表示仪器 选中归零功能	测 L,R 时,先将测试端短路,仪器归零,仪器将自动扣除引线串联电阻或电感,测 C 时归零(将测试端开路),将自动扣除测试线或治具(夹具)的分布电容.
12	自动,手动转换 该键中 LED 亮,表示 选中自动档位键.	在测试中自动换档
13	向下跳档键(DOWN)	按一次向下跳一档,在最低 档时按该键不起作用.
14	向上跳档键(UP)	按一次向上跳一档,在最高 档按该键不起作用.

表 2.1:图 2.1 面板控制键、部件名称及功能

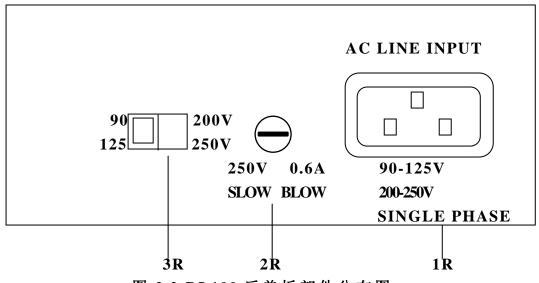


图 2.2:DL100 后盖板部件分布图

1R 电源插座 交流电源输入 使用单相三线安全插座

2R 保险 0.6A 慢速

3R 转换开关(115V/220V) 根据供电电压决定

三. 使用方法

3.1 使用常识

使用该仪器请详细阅读说明,按照一定顺序开机,注意各类参量(L,C,R)的测量方法.

3.1.1 开机

插电源插座之前,注意仪器后盖板上的电源电压选择开关位置. 正确的开机步骤:

- a. 连接电源之前,先检查后盖板上的电源电压选择开关是否和供电电压相符,电源频率必须是 50Hz 或 60Hz,电压是:90~125V 或 200~250V,仔细检查后插上电源线.
- b.按电源开关于 ON 位置,自检开始,仪器在电源接通时自动开始自检,重新开机即再次自检.
- 3.1.2 自检正常后,按相应控制键.

- ★ 参量选择:根据被测件用 L,C,R 键选择 L,C 或 R.
- ★ 频率:根据需要用"FREO"键选择测试信号频率(120Hz/100Hz,1KHz)
- ★ 等效电路模式:串联等效(SERIES 或 SER)并联等效(PARALLEL 或 PAR)
- ★ 档位:使用 "AUTO", "DOWN", "UP"键,选择自动换档时AUTO 键上 LED 亮,若选手动方式为固定档位,按上键使 LED 熄灭.

3.1.3 归零

见第二章 2.2 第 11 项叙述.

3.2 参量测试

已充电的电容测试前必须放电,如果被测电容上的充电电压超过 60V,尽管测试输入端接有保护电路,测试中放电过程仍会损坏仪器.

3.2.1 测试插座说明:

IL(电流源低端)	左	I-
PL(测试点低端)	左靠中	P-
IH(电流源高端)	右	I+
PH(测试点高端)	右靠中	P+

3.2.2 测试治具或测试线的电容效应

测试治具或测试线应使用分布电容很小的屏蔽电缆,在测量大电感时减小谐振效应是提高测试精度的保证.

任何治具(夹具)都附加一点电容,等效为以并联的方式加到测试端,这是因为屏蔽层和蕊线之间有分布电容存在,测试端和地之间也有分布电容,按归零可修正分布电容的影响.

3.3 精度

在一定的测试范围内,仪器精度为 R、L、C 显示值的 0.2%,超过这个范围的 测试精度见 1.8.

3.4 测试频率和串并联等效模式

被测参量的阻抗值不是很大,可任选 1KHz 或 120Hz(100Hz)测试信号源,测量大于 $10M\Omega$ 、 1000μ F 或 1000H 用低频测试源测试,选择串并联不受限制.

参量 L、C、R 测试依据一定的法则,选择二种等效模式中的一种(许多阻抗测量不需选择串联等效或并联等效,但仪器总是选中其中一种)接近"纯"电阻或"纯"电抗,串联模式与并联模式等效测量值近似相等.但当 D、Q 接近 1 时使用串并联模式就有一定的差别.接近"纯"电阻,"纯"电抗和测试频率有关,D、O 接近 1 或测试频率接近测试端谐振频率也和测试信号频率密切相关.

3.4.1 法则

电阻低于 $1K\Omega$,选择串联 120Hz(100Hz)通常称为直流电阻测量,选择低频减小交流影响,选串联模式减小被测件等效串联电感的影响.

电阻大于等于 1 K Ω, 选择并联 120Hz (100Hz), 选择低频减少交流影响, 选择"并联", 是因为测量过程中出现电抗部份, 等效为被测件并联一个电容呈现的高电抗, 用并联模式减小这种影响, 如果 Q < 0.1, 已存在小电容影响.

电容小于 2nF,选择,选择串联 1KHz,选用高的测试信号可提高测试精度,同样能测量大于 1000 μ F 以上电容.

电感小于 2mH, 用串联 1KHz, 选择高测试频率可提高测试精度.

电感大于 200H, 用串联, 120Hz, 选择低测试频率可提高测试精度, 可测量大于 1000H 以上的电感.

3.4.2 串联并联计算方式(图 3-1)

电阳和电感

电阻和电容

$$X = \omega L \qquad Z = Rs + j \omega Ls \qquad X = \frac{1}{\omega c} \qquad Z = Rs + \frac{1}{j\omega Cs}$$

$$Z = \frac{j\omega LpRp}{Rp + j\omega Lp} \qquad Z = \frac{Rp + jQ^2\omega Lp}{1 + Q^2} \qquad Z = \frac{Rp}{1 + j\omega RpCp} \qquad Z = \frac{D^2Rp + 1/(j\omega Cp)}{1 + Q^2}$$

$$Q = \frac{1}{D} \qquad Q = \frac{\omega Ls}{Rs} \qquad Q = \frac{Rp}{\omega Lp} \qquad D = \frac{1}{Q} \qquad D = \omega RsCs \qquad D = \frac{1}{\omega RpCp}$$

$$Ls = \frac{Q^2}{1 + Q^2} Lp \qquad Ls = \frac{1}{1 + D^2} Lp \qquad Cs = (1 + D^2) Cp \qquad Cp = \frac{1}{1 + D^2} Cs$$

$$Lp = \frac{1 + Q^2}{Q^2} Ls \qquad Lp = (1 + D^2) Ls \qquad Rs = \frac{D^2}{1 + D^2} Rp \qquad Rp = \frac{1 + D^2}{D^2} Rs$$

$$Rs = \frac{1}{1 + Q^2} Rp \qquad Rp = (1 + Q^2) Rs \qquad Rs = \frac{D}{\omega Cs} \qquad Rp = \frac{1}{\omega CpD} \qquad Rp = \frac{1}{Gp}$$

$$Rs = \frac{\omega Ls}{Q} \qquad Rp = Q \omega Lp \qquad Rp = \frac{1}{Gp} \qquad Bp = \frac{1}{Xp}$$

$$Bp = \frac{1}{Xp}$$

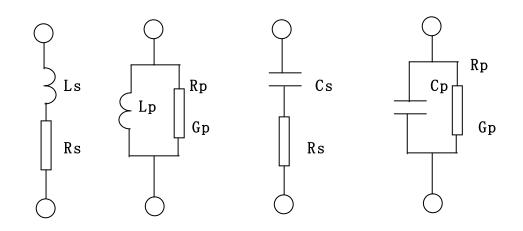


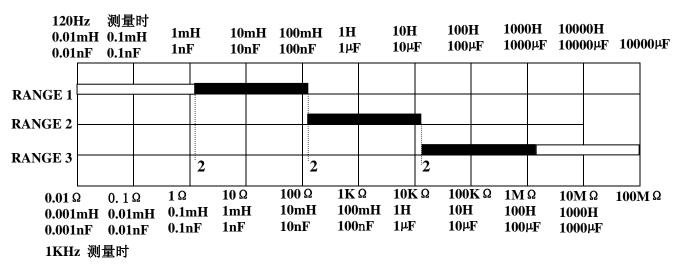
图 3.1:串联模式或并联模式时的等效电路

使用仪器理解测试结果时应考虑到这个概念;任一频率下用串联或并联模式等效,任何阻抗既不是纯电阻也不是纯电抗.

在串联或并联模式等效为电阻电抗的一定相接,如图 3.1 所示,选择串联时等效时测量值是 Rs, Ls或 Cs,选择并联等效时测量值是 Rp, Lp或 Cp.

3.4.3 电感或电容的等效串联电阻

电容的总损耗可用不同方式表达,这包括 D 和"ESR"(ESR 即串联等效电阻,Equivalent Series Resistance),同样电感测量也可用相同方法表达,DL100LCR表可显示C值和ESR或L值和ESR,C或L的ESR在同一窗分二次显示,注意这时应选择串联等效,如果显示ESR值,根据需要在LCR键中选择C或L,再按AUTO键使LED熄固定档位,再按LCR键选R,就能直接测量ESR,即C或L的ESR在同一档位测量.


3.4.4 电感的串并联等效电路反应被测件的物理结构

低频测量时用串联等效比较合适,其损耗的有效机理是线材的"欧姆损耗"或"铜耗",如果电感中用到磁蕊,高频等效损耗是铁耗(涡流及磁滞现象),这时用高频源及并联等效比效合适,高频测试时还要考虑测试端影响,但在 1KHz 和120Hz(100Hz)测试时测试值很可能是一致的.

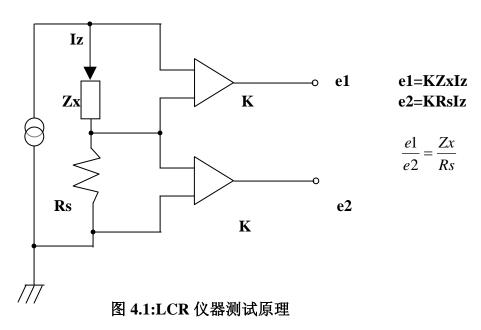
3.5参数和档位选择

按 LCR 也就相应选择 L/Q,C/D 或 R/Q,仪器允许向下选档,选择较小数位显示,但精度下降,正确档位选择见图 3-2,注意器件的本身原因引起的误解(例如:电感应考虑实际存在的分布电容和电阻影响,而这些参量不能分开,易被误解).

测量档位见图 3-2

■■■ 表示自动档位下有最高精度(0.2%)范围

□ 表示自动档位下不在最高精度范围


图 3.2:档位精度示意图

四. 测 试 原 理

4.1

LCR 测试仪采用矢量电压电流测试原理,由微处理器控制相敏模数(A-D) 转换器,测量加在被测件上的矢量电压和电流,本机分别对 0°、90°、180°、270°四相位电压、电流进行八次测量,再按复数欧姆定律计算出元件的各参数值,有效地提高了整机的测量精度.

测试原理见图 4.1

矢量电压加在被测件 Zx 及标准电阻 Rs 间,在 Zx、Rs 中产生电流 Iz, 因为不能控制通过 Zx 的电流, 单独测量电流是无意义的, 两个增益相同的差分放大器中, 输出 e1、e2, 测量值 e2 的作了电流-电压变换,e1、e2 两个测量值的比值抵消了检测中的转换系数.

相敏检测器的模数转换要加以适当的修正因子,抵消测试中的固定误差,这些都是高精度测量的保证.

4.2 频率和时序

振荡源使用晶振产生 25M 左右的信号,此方波经过一系列分频后提供微处理器时钟脉冲,同步信号及测量频率基准源.由分频器获得的倍频形式在址选择信号(2F,4F,...)送入正弦波产生器并经滤波功率放大后加到被测件 Zx 上. 测试信号源的移相由微处理器控制.

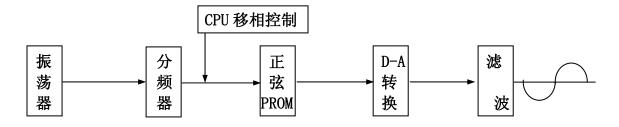


图 4.2:正弦信号源产生框图

4.3 模拟部份图示

流经 Zx 的信号电流经电流-电压转换后,由多路开关分时通过增益控制及滤波处理,最后由相敏 A-D 变换电路转换成数字量送给微处量器,微处理器计算修正后得出被测物的参数送显示器显示.

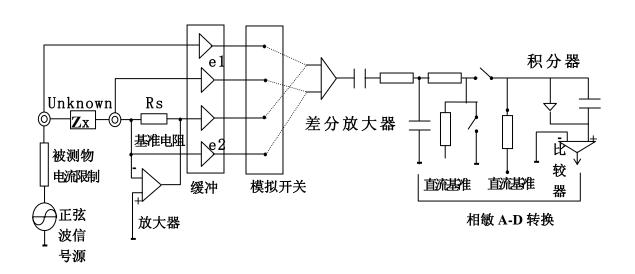


图 4.3:模拟量测试及 D-A 转换

该仪器不需加以校整,仪器精度由五个标准电阻决定,D 值或 Q 值根据设置的测试信号频率及选中的标准电阻由微处理器计算得出.

4.4 数字电路分框图

4.4 数字电桥部分流程图