

SIRPa/PD-1 Dual Effector Reporter Cell CBP74154 操作说明书

目录

1.	背景信息	. 1
2.	产品介绍	. 1
3.	细胞基本信息	. 2
4.	主要仪器试剂耗材	. 3
5.	细胞培养	. 3
	5.1 细胞复苏	. 3
	5.2 细胞传代	. 3
	5.3 细胞冻存	. 4
6.	细胞实验流程	. 4
	6.1 SIRPa&PD-1 Blockade Assay	4
7.	数据展示	. 6
8.	相关产品	. 7

1. 背景信息

Programmed Cell Death Protein 1 (PD-1),一种在激活的 T 细胞上表达的受体,与其配体 PD-L1 和 PD-L2 结合,负向调节免疫反应。 PD-1 配体存在于大多数癌症中,PD-1:PD-L1/2 相互作用会抑制 T 细胞活性,并使癌细胞逃避免疫监视。 PD1/PDL1 信号转导通路是肿瘤免疫抑制的重要组成部分,可以抑制 T 淋巴细胞的兴奋,增强肿瘤细胞的免疫耐受,从而实现肿瘤免疫逃逸。综上所述,PD1 与 PDL1 结合可以减弱 T 细胞介导的免疫监视,导致免疫反应缺失,甚至导致 T 细胞凋亡。PD1/PDL1 抑制剂可解除抗肿瘤 T 细胞的免疫抑制,从而导致 T 细胞增殖并渗透到肿瘤微环境中并诱导抗肿瘤反应。PD-1:PD-L1/2 通路还参与调节自身免疫反应,使这些蛋白质成为多种癌症以及多发性硬化症、关节炎、狼疮和 I 型糖尿病的有希望的治疗靶点。

SIRPa属于 SIRP 家族,是一个抑制性的免疫受体,它通常选择性的表达在髓系细胞(巨噬细胞,粒细胞和树突细胞等)以及神经细胞的膜表面,在其它体细胞上则较少有表达。作为一种跨膜蛋白,其胞外区存在三种免疫球蛋白结构域,其中 N 端氨基酸末端结构可与 CD47 结合介导细胞信号转导。

2. 产品介绍

科佰生物推出 SIRPa/PD-1 Dual Effector Reporter Cell 报告基因细胞,在由调控因子调控并表达报告基因的重组细胞上,稳定表达人 SIRPa(BIT, MFR, SIRP, CD172A, MYD-1, SHPS1, PTPNS1, GenBank Accession # NM_140885) 和 PD1(Programmed Cell Death 1, PDCD1, SLEB2, CD279, GenBank Accession #NM 005018)。

报告基因细胞模型可以很好的反映分子作用机制,同时具备更小的变异性和更好的可操 作性,已被中检院及药企广泛应用于抗体药物生物活性的检定,对于药物研发、质量控制、 批次放行都有重要意义。

SIRPa&PD-1 报告基因药靶模型很好的模拟了体内 SIRPa&PD-1 的信号转导过程,原理见图 1 所示。

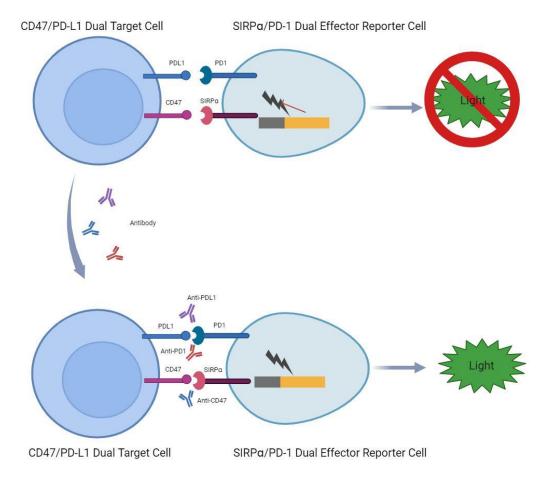


图 1: SIRPa/PD-1 细胞模型原理图

3. 细胞基本信息

表达基因: SIRPa,PD1

别名: Programmed cell death 1, PDCD1, PD-1, PD1, SLEB2, CD279, BIT, MFR, SIRP, CD172A, MYD-1, SHPS1, PTPNS1

传代培养基: RPMI-1640+10%FBS+2ug/ml puromycin+5ug/ml blasticidin+ 200ug/ml hygromycin

细胞冻存液: 90% FBS+10% DMSO

细胞形态: 悬浮

支原体检测: 阴性

稳定性: 32代(室内测试结果,不表示超过32代以上不稳定)

保存条件: 液氮保存

应用:细胞水平 SIRPa&PD-1 信号传导的激活剂或抑制剂的活性检测,可用于高通量筛选或QC 放行

4. 主要仪器试剂耗材

名称	品牌	货号
SIRPa/PD-1 Dual Effector Reporter Cell 完全培养基	Cobioer	CBP74154M
细胞冻存液	Cobioer	CBP50089
CD47/PD-L1 Dual Target Cell 细胞	Cobioer	CBP74155
Anti-PD1 mAb	Cobioer	CBP74018A
Anti-CD47 mAb	Cobioer	CBP74124A
Nano-Glo® Live Cell Assay System	/	/
96 Well Assay Plate (White Plate, Clear Bottom with	Costar	3610
Lid Tissue Culture Treated Polystyrene 1/Pack)		
Synergy H1 多功能酶标仪	Biotek	/

5. 细胞培养

5.1 细胞复苏

- 1) 在 37°C 水浴中快速融化细胞约 60 秒。 一旦细胞解冻(可能比 60 秒稍快或稍慢),快速将冻存管中的细胞吸入装有 10 ml 预热 SIRPα/PD-1 Dual Effector Reporter Cell 完全培养基的 15 ml 离心管中。
- 2) 1000 转、5 分钟离心细胞,除去培养基并将细胞重悬于 5 ml 预热的完全培养基中。
- 3) 调整细胞密度到 3-6 x 10⁵ cells/ml,加入 T25 培养瓶中,放入 37°C、5% CO2 培养箱中。

5.2 细胞传代

每 1-2 天取细胞悬液计数,当密度大于 1x 10^6 cells/ml 时,请及时传代或补加新鲜完全培养基,保持细胞密度在 1x 10^5 - 1x 10^6 cells/ml 之间。

5.3 细胞冻存

取 4-8x10⁶ 细胞离心后弃上清。加 1ml 细胞冻存液(90% FBS+10%DMSO), 吹打均匀,加入细胞冻存管。立即放入细胞冻存盒(Nalgene 5100-0001),加异丙醇到刻度线,放-80°C 冰箱。24 小时后将冻存管转到液氮中长期保存。

6. 细胞实验流程

6.1 SIRPa&PD-1 Blockade Assay

SIRP a & PD-1 Blockade Assay 由报告细胞 SIRP a / PD-1 Dual Effector Reporter Cell,Cat. #CBP74154 细胞和靶细胞 CD47/PD-L1 Dual Target Cell,Cat. #CBP74155 细胞配对开展,本实验中使用 Anti-PD1 mAb,Cat.#CBP74018A 和 Anti-CD47 mAb,Cat.#CBP74124A 作为测试样本,对本模型的生物功能进行验证(我们分别验证了单独 Anti-PD1 mAb 作用、单独 Anti-CD47 mAb 作用和 Anti-PD1 mAb、Anti-CD47 mAb 共作用的结果)。

图 2: SIRPa&PD-1 Blockade Assay 流程示意图

- 1) 取对数生长的 CD47/PD-L1 Dual Target Cell 细胞离心弃上清,重悬于新鲜的含 10%FBS 的 RPMI1640 培养基中,将重悬的细胞密度调整为 2x10⁶ cells/ml,然后将细胞加入步骤 3 的 96 孔板中,每孔 40 ul。
- 2) 用含 10%FBS 的 RPMI1640 培养基对测试样本进行梯度稀释,加入梯度稀释的 5*浓度样品 (20 ul/孔)到接种好细胞的 96 孔板中,样本从最高浓度 50 ug/ml (5*浓度)开始,3 倍稀释 10 个浓度梯度,并另外设置空白培养基对照孔,37℃ 培养箱 1 小时。(注意:样品浓度及梯度设置跟样品本身的特性及客户的实验需求高度相关,客户应根据自身的

实际情况优化设置,我们不做具体推荐,本梯度稀释方案仅适用我们本次验证实验涉及 样本)

- 3) 取对数期生长的 SIRPa/PD-1 Dual Effector Reporter Cell 细胞离心弃上清,重悬于新鲜的 10% FBS 的 RPMI1640 培养基中,将重悬的细胞密度调整为 1x10⁶ cells/ml。
- 4) 将重悬的细胞接种到白壁透明底的 96 孔细胞培养板中,40 ul/孔细胞悬液,放置 37℃ 培养箱中继续培养 4.5 小时。
- 5) 将 Nano-Glo® Live Cell Assay System 中的 Nano-Glo® Live Cell Substrate 用 Nano-Glo® LCS
 Dilution Buffer 稀释 20 倍,配制成 5*检测液。
- 6) 将步骤 4)的 96 孔板从培养箱中取出,加入 25ul/孔 步骤 5)中配制的 5*检测液,然后剧烈震荡 15 到 30 秒,然后放置 10 到 20 分钟放入酶标仪中读取数值。
- 7) 根据每个梯度浓度孔对应的读值,利用 Prism Graphpad 软件拟合样品对细胞激活的梯度曲线,并且计算样品的 EC50。

孔板排布:

	1	2	3	4	5	6	7	8	9	10	11	12	
A	Buffer	Buffer	Buffer	Buffer	Buffer	Buffer	Buffer	Buffer	Buffer	Buffer	Buffer	Buffer	Assay Buffer
В	Buffer	no Antibody	稀释9	稀释8	稀释7	稀释6	稀释5	稀释4	稀释3	稀释2	稀释1	Buffer	参考样本
С	Buffer	no Antibody	稀释9	稀释8	稀释7	稀释6	稀释5	稀释4	稀释3	稀释2	稀释1	Buffer	测试样本1
D	Buffer	no Antibody	稀释9	稀释8	稀释7	稀释6	稀释5	稀释4	稀释3	稀释2	稀释1	Buffer	测试样本2
Е	Buffer	no Antibody	稀释9	稀释8	稀释7	稀释6	稀释5	稀释4	稀释3	稀释2	稀释1	Buffer	参考样本
F	Buffer	no Antibody	稀释9	稀释8	稀释7	稀释6	稀释5	稀释4	稀释3	稀释2	稀释1	Buffer	测试样本1
G	Buffer	no Antibody	稀释9	稀释8	稀释7	稀释6	稀释5	稀释4	稀释3	稀释2	稀释1	Buffer	测试样本2
Н	Buffer	Buffer	Buffer	Buffer	Buffer	Buffer	Buffer	Buffer	Buffer	Buffer	Buffer	Buffer	Assay Buffer

图 3:96 孔板排布建议案例展示

7. 数据展示

Dose response of Blocking Antibodies in SIRPa/PD-1 Dual Effector Reporter Cells (C18) With CD47/PD-L1 Dual Target Cells

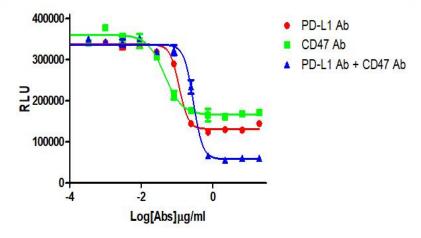


图 4: SIRPa&PD-1 Blockade Assay 验证结果

8. 相关产品

名称	货号
PDL1/CD155/TCR Activator/CHO	CBP74127
PD1-IL2 Pathway Effector Reporter Cell	CBP74144
PDL1/aAPC/Raji	CBP74145
PDL1/TCR Activator/CHO	CBP74066
PDL2/TCR Activator/CHO	CBP74065
PDL1/HEK293	CBP74001
PDL1/CHO	CBP74032
PDL1/Raji	CBP74095
PDL2/CHO	CBP74064
PD1/HEK293	CBP74042
PD1/CHO	CBP74043
PD1/CTLA4 Dual Effector Reporter Cell	CBP74150
PDL1/CD80&CD86 aAPC Cells	CBP74151
PD1/LAG3 Dual Effector Reporter Cell	CBP74147

PD1/NFAT-Luc/Jurkat	CBP74018
PDL1/MHCII APC Cell	CBP74146
PD1/41BB Dual Effector Reporter Cell	CBP74172
PD1/OX40 Dual Effector Reporter Cell	CBP74163
PDL1 aAPC Cell	CBP74164
SIRPa/PD-1 Dual Effector Reporter Cell	CBP74154
CD47/PD-L1 Dual Target Cell	CBP74155
CD80/PDL1/TCR Activator/CHO	CBP74129