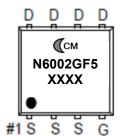

Description

The CMN6002GF5 is the N-Channel enhancement mode power field effect transistors with high cell density, trench technology. This high density process and design have been optimized switching performance and especially tailored to minimize on-state resistance.

Features

- VDS: 60V
- ID: 95A
- RDS_{ON} (@VGS=10V): < 2.5mΩ
- RDS_{ON} (@VGS=4.5V) : < 3.4mΩ
- High density cell design for extremely low RDS_{ON}
- Excellent on-resistance and DC current capability


Equivalent Circuit and Pin Configuration

Applications

- Battery management
- Power management
- Load switch

Marking Information

Marking Code =CMN6002GF5 Date Code = XXXX

Ordering Information

Part Number	Packaging	Reel Size	
CMN6002GF5	5000/Tape & Reel	13 inch	

Absolute Maximum Ratings (TA=25 °C unless otherwise noted)

Parameter		Symbol	Maximum	Unit V
Drain-source Voltage	VDS		60	
Gate-source Voltage		Vgs	±20	V
Drain Current ⁽¹⁾⁽⁶⁾	Tc=25°C	5	95	А
	Tc=100°C	ID	60	А
	Ta=25°C		16	А
	Ta=100°C	ID	10	А
Pulsed Drain Current ⁽³⁾		IDМ	380	А
Total Power Dissipation ⁽⁴⁾	Tc=25°C	Da	50	W
	Ta=25°C	PD	6.25	W
Thermal Resistance Junction-t	esistance Junction-to-Ambient ⁽²⁾⁽⁵⁾		20	°C/W
Thermal Resistance Junction-t	Resistance Junction-to-Case ReJc 2.5		2.5	°C/W
Junction and Storage Temperature Range		TJ,TSTG	-55 to +150	°C

Electrical Characteristics (TJ=25 °C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Мах	Units
Static Parameter	1		1	1	1	
Drain-Source Breakdown Voltage	BVDSS	Vgs=0V,ID=250µA	60			V
Zero Gate Voltage Drain Current	IDSS	VDS=60V,VGS=0V,TC=25°C			1	μA
Gate-Body Leakage Current	IGSS	VGS=±20V,VDS=0V			±100	nA
Gate Threshold Voltage	VGS(th)	VDS=VGS,ID=250µA	1.0		3.0	V
	Dente	VGS=10V,ID=20A		2.1	2.5	mΩ
Static Drain-Source on-Resistance	RDS(on)	Vgs=4.5V,Id=15A		2.7	3.4	
Diode Forward Voltage	Vsd	Is=20A,VGs=0V			1.2	V
Maximum Body-Diode Continuous Current	ls				95	А
Dynamic Parameters				1	I	
Input Capacitance	Ciss	V _{DS} =25V,V _{GS} =0V,f=100KHz		5950		pF
Output Capacitance	Coss			1250		
Reverse Transfer Capacitance	Crss			85		
Switching Parameters				1	I	
Total Gate Charge	Qg			93		nC
Gate Source Charge	Qgs	Vgs=10V,Vds=50V,Id=50A		17		
Gate Drain Charge	Qgd			14		
Turn-on Delay Time	tD(on)	- Vgs=10V,Vdd=30V,		23		- ns
Turn-on Rise Time	tr			6.8		
Turn-off Delay Time	tD(off)	I_D =25A,RGEN=2 Ω		80		
Turn-off Fall Time	tf			27		

Noted: (1) Pulse Test: Pulse Width \leq 300us,Duty cycle \leq 2%.

- (2) The value of R_{θJA} is measured with the device mounted on lin2 FR-4 board with 2oz.Copper,in a still air environment with T_A =25°C.The Power dissipation PDSM is based on R_{θJA} t≤10s and the maximum allowed junction temperature of 150°C.The value in any given application depends on the user's specific board design.
- (3) Single pulse width limited by junction temperature $T_{J(MAX)} = 150^{\circ}C$.
- (4) The power dissipation PD is based on T_{J(MAX)} = 150°C, using junction-to-case thermal resistance, and is more useful in setting the upper Dissipation limit for cases where additional heatsinking is used.
- (5) The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JA}$ and case to ambient.
- (6) The maximum current rating is package limited.

Typical Performance Characteristics



Figure 1. Output Characteristics

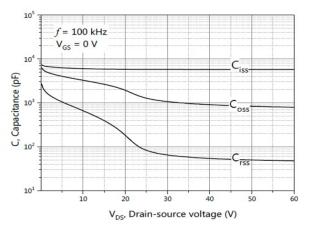


Figure 3. Capacitance Characteristics

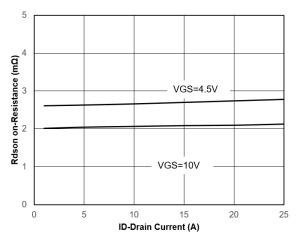


Figure 5. Drain-Source on Resistance

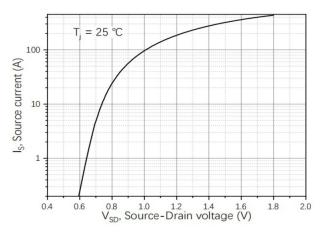
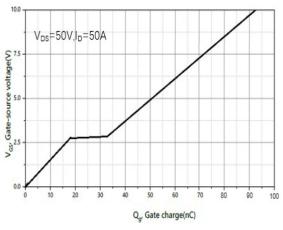
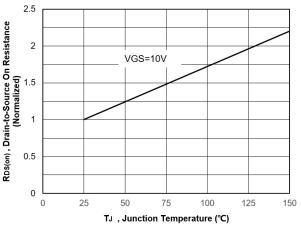
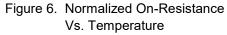
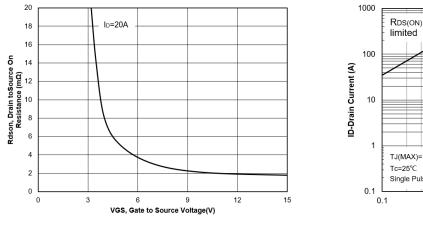
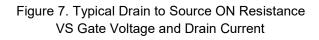


Figure 2. Transfer Characteristics


Figure 4. Gate Charge

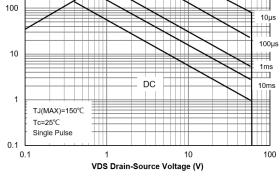


Figure 8. Safe Operation Area

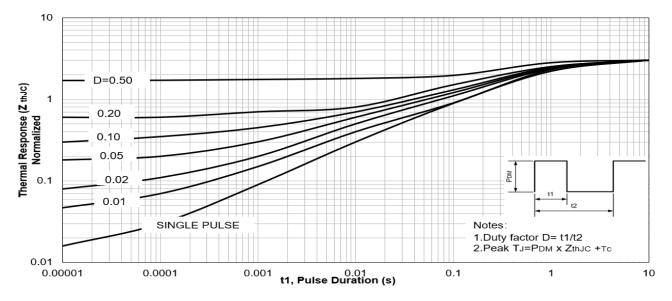


Figure 9. Maximum Effective Transient Thermal Impedance, Junction-to-Case

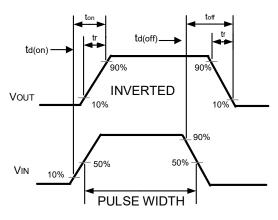
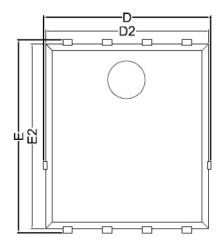
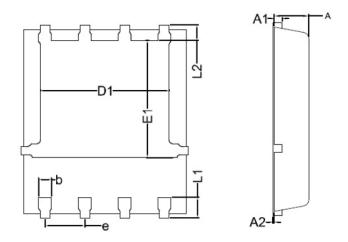
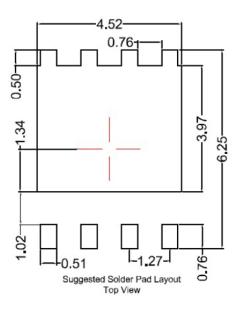




Figure 10. Switching wave



DFN 5X6 Package Outline Drawing

SYMBOL	MILLIMETER			
	MN	NOM	MAX	
D	5.15	5.35	5.55	
E	5.95	6.15	6.35	
A	1.00	1.10	1.20	
A1	0.254 BSC			
A2			0.10	
D1	3.92	4.12	4.32	
E1	3.52	3.72	3.92	
D2	5.00	5.20	5.40	
E2	5.66	5.86	6.06	
L1	0.56	0.66	0.76	
L2	0.50 BSC			
b	0.31	0.41	0.51	
е	1.27 BSC			

Contact Information

Applied Power Microelectronics Inc. Website: http://www.appliedpowermicro.com Email: sales@appliedpowermicro.com Phone: +86 (0519) 8399 3606

Applied Power Microelectronics Inc. (APM) reserves the right to make changes to the product specification and data in this document without notice. APM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does APM assume any liability arising from the application or use of any products or circuits, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.