

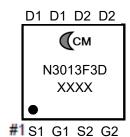
Description

The CMN3013F3D is the N-Channel enhancement mode power field effect transistors with high cell density, trench technology. This high density process and design have been optimized switching performance and especially tailored to minimize on-state resistance.

Applications

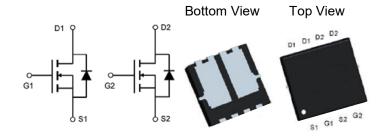
- Battery management
- Power management
- Load switch

Features


VDS: 30VID: 32A

• RDS_{ON} (@VGS=10V): $< 12m\Omega$ • RDS_{ON} (@VGS=4.5V): $< 17m\Omega$

• High density cell design for extremely low RDS_{ON}


Excellent on-resistance and DC current capability

Marking Information

Marking Code = CMN3013F3D Date Code = XXXX

Equivalent Circuit and Pin Configuration

Ordering Information

Part Number	Packaging	Reel Size			
CMN3013F3D	5000/Tape & Reel	13 inch			

Absolute Maximum Ratings (TA=25 ℃ unless otherwise noted)

	Symbol	Maximum	Unit	
Drain-source Voltage	VDS	30	V	
Gate-source Voltage	Vgs	±20	V	
	Tc=25°C		32	Α
Drain Current ⁽¹⁾⁽⁶⁾	Tc=100°C	lD	20	Α
Drain Current A	TA=25°C	In .	13	Α
	TA=100°C	lD	8	Α
Pulsed Drain Current ⁽³⁾	IDM	128	Α	
Total Power Dissipation ⁽⁴⁾	Tc=25°C	PD	18	W
	TA=25°C	FD	3	W
Thermal Resistance Junction-t	Reja	40	°C/W	
Thermal Resistance Junction-t	ReJc	7	°C/W	
Junction and Storage Tempera	TJ,TSTG	-55 to +150	°C	

Electrical Characteristics (TJ=25 ℃ unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Static Parameter					I	1
Drain-Source Breakdown Voltage	BVDSS	Vgs=0V,ID=250µA	30			V
Zero Gate Voltage Drain Current	IDSS	VDS=30V,VGS=0V,TC=25°C			1	μΑ
Gate-Body Leakage Current	Igss	VGS=±20V,VDS=0V			±100	nA
Gate Threshold Voltage	VGS(th)	VDS=VGS,ID=250µA	1.0		3.0	V
0.00	D	VGS=10V,ID=13A		9	12	
Static Drain-Source on-Resistance	RDS(on)	Vgs=4.5V,ID=10A		17	mΩ	
Diode Forward Voltage	VsD	Is=13A,Vgs=0V			1.2	V
Maximum Body-Diode Continuous Current	Is				13	Α
Dynamic Parameters					I	1
Input Capacitance	citance Ciss			1020		
Output Capacitance	Coss	VDS=15V,VGS=0V,f=1MHz		176		pF
Reverse Transfer Capacitance	Crss			133		
Switching Parameters					1	
Total Gate Charge	Qg			21.8		
Gate Source Charge	Qgs	VGS=10V,VDS=15V,ID=30A		3.4		nC
Gate Drain Charge	Qgd			6.5		
Turn-on Delay Time	tD(on)			8		
Turn-on Rise Time	tr	Vgs=10V,Vdd=20V,		15		- ns
Turn-off Delay Time	tD(off)	ID=2A, RL=1Ω,RGEN=3Ω		27		
Turn-off Fall Time	tf			7		

Noted: (1) Pulse Test: Pulse Width \leq 300us, Duty cycle \leq 2%.

- (2) The value of $R_{\theta JA}$ is measured with the device mounted on lin2 FR-4 board with 2oz.Copper,in a still air environment with T_A =25°C.The Power dissipation PDSM is based on $R_{\theta JA}$ t≤10s and the maximum allowed junction temperature of 150°C.The value in any given application depends on the user's specific board design.
- (3) Single pulse width limited by junction temperature $T_{J(MAX)} = 150$ °C.
- (4) The power dissipation PD is based on T_{J(MAX)} = 150°C,using junction-to-case thermal resistance, and is more useful in setting the upper Dissipation limit for cases where additional heatsinking is used.
- (5) The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JA}$ and case to ambient.
- (6) The maximum current rating is limited by maximum junction temperature.

Typical Performance Characteristics

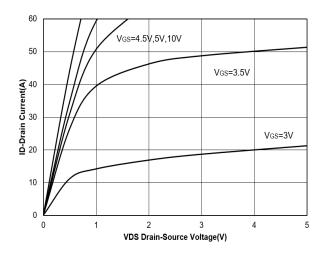


Figure 1. Output Characteristics

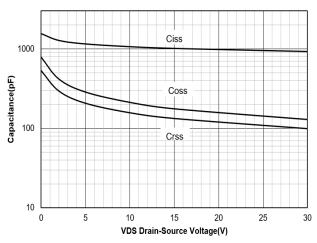


Figure 3. Capacitance Characteristics

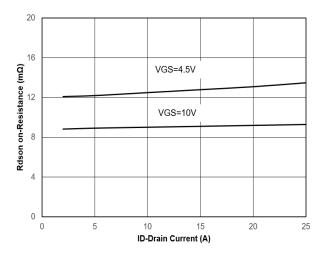


Figure 5. Drain-Source on Resistance

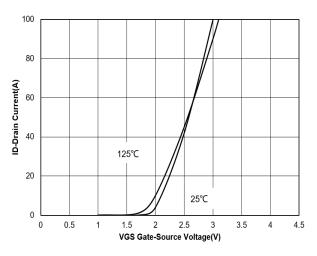


Figure 2. Transfer Characteristics

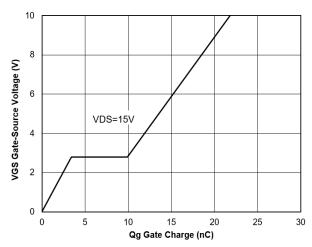


Figure 4. Gate Charge

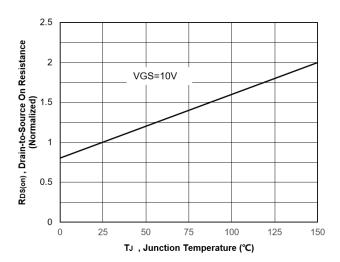
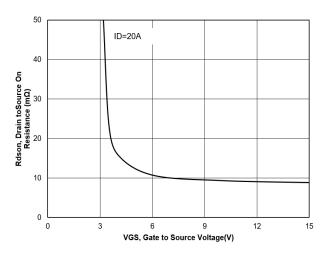



Figure 6. Normalized On-Resistance

RDS(ON) limited 100 10µs ID-Drain Current (A) 100µs 10 1ms DC 10ms 100ms TJ(MAX)=150°C 1s = TA=25°C Single Pulse 0.1 **–** 0.01 100 VDS Drain-Source Voltage (V)

Figure 7. Typical Drain to Source ON Resistance VS Gate Voltage and Drain Current

Figure 8. Safe Operation Area

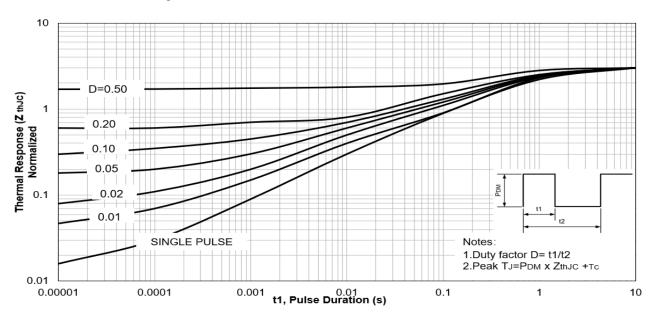


Figure 9. Maximum Effective Transient Thermal Impedance ,Junction-to-Case

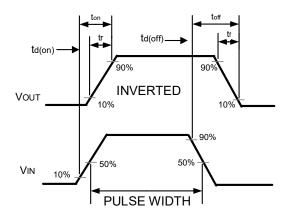
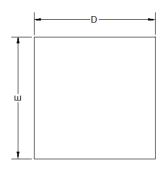
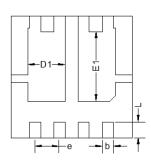
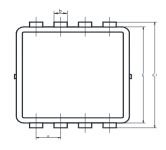
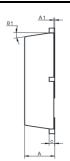
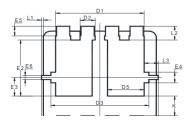




Figure 10. Switching wave

DFN3333-8L Package Outline Drawing







SYMBOL	MILLIMETER						
	MIN	NOM	MAX				
D	3.15	3.25	3.35				
E	3.15	3.25	3.35				
А	0.70	0.80	0.90				
A1	0.2 BSC						
D1	0.90	1.00	1.10				
E1	1.75	1.85	1.95				
L	0.325	0.425	0.525				
b	0.20	0.30	0.40				
е	0.65 BSC						

PDFN3333-8L Package Outline Drawing

 $\, mm \,$

0.23

0.2

0.15

0.6

0.52

UNIT	Α	A1	b	С	D1	D2	D3	D4	D5	Е	E1	E2	E3
mm	0.9	0.05	0.35	0.25	2.6	0.5	2.7	3.2	1.135	3.1	3.3	1.85	0.68
mm	0.7	0	0.24	0.1	2.4	0.3	2.5	3	0.935	2.9	3.1	1.65	0.48
									1		1		
UNIT	E4	E5	E6	е	K	L	L1	L2	L3	θ1]		
	0.43	0.4	0.25	0.7	0.72	0.5	0.1	0.53	0.475	12°]		

0

0.3

Applied Power Microelectronics Inc. (APM) reserves the right to make changes to the product specification and data in this document without notice. APM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does APM assume any liability arising from the application or use of any products or circuits, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

0.33

0.275

0°