

Description

The AU3341P1 is a bi-directional TVS diode, utilizing leading monolithic silicon technology to provide fast response time and low ESD clamping voltage, making this device an ideal solution for protecting voltage sensitive data and power line. The AU3341P1 complies with the IEC 61000-4-2 (ESD) with ±30 kV air and ±30 kV contact discharge. It is assembled into an ultra-small 1.0x0.6x0.5mm lead-free DFN package. The small size and high ESD surge protection make AU3341P1 an ideal choice to protect cell phone, digital cameras, audio players and many other portable applications.

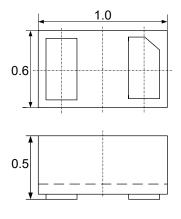
Features

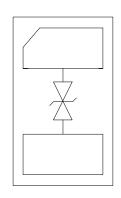
- Protects one data or power line
- Ultra low leakage: nA level
- Low operating voltage: 3.3V
- Low clamping voltage
- 2-pin leadless package
- Complies with following standards:
 - IEC 61000-4-2 (ESD) immunity test
 Air discharge: ±30kV
 - Contact discharge: ±30kV
 - IEC61000-4-5 (Lightning) 20A (8/20μs)
- RoHS Compliant

Mechanical Characteristics

- Package: DFN1006-2
- Case Material: "Green" Molding Compound.
- Terminal Connections: See Diagram Below
- · Marking Information: See Below

Applications


- Cellular Handsets and Accessories
- Personal Digital Assistants
- Notebooks and Handhelds
- Portable Instrumentation
- Digital Cameras
- Peripherals
- Audio Players
- Keypads, Side Keys, LCD Displays


Marking Information

DF = Device Marking Code

Dimensions and Pin Configuration

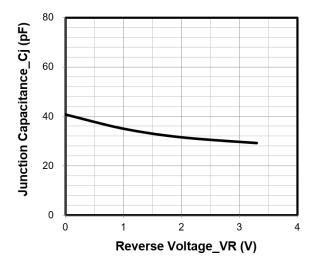
Package Dimensions

Circuit and Pin Schematic

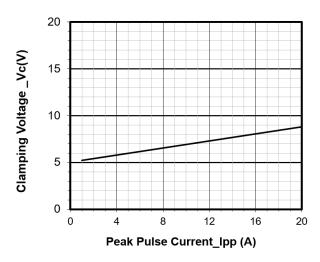
Ordering Information

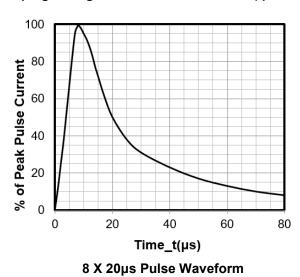
Part Number	Packaging	Reel Size
AU3341P1	10000/Tape & Reel	7 inch

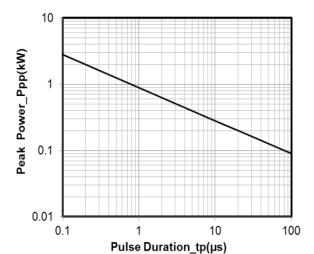
Absolute Maximum Ratings (T_A=25°C unless otherwise specified)


Parameter	Symbol	Value	Unit	
Peak Pulse Power (8/20µs)	Ppk	200	W	
Peak Pulse Current (8/20µs)	IPP	20	Α	
ESD per IEC 61000-4-2 (Air)	VESD	±30	kV	
ESD per IEC 61000-4-2 (Contact)	VESD	±30	K.V	
Operating Temperature Range	TJ	-55 to +125	°C	
Storage Temperature Range	Tstg	-55 to +150	°C	

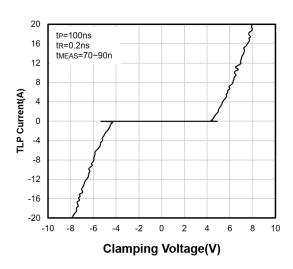
Electrical Characteristics (T_A=25°C unless otherwise specified)


Parameter	Symbol	Min	Тур	Max	Unit	Test Condition
Reverse Working Voltage	VRWM			3.3	V	
Punch-Through Voltage	VPT	4			V	IPT= 2uA
Snap-Back Voltage	VsB	3.5			V	ISB = 50mA
Reverse Leakage Current	I _R			0.2	μA	VRWM = 3.3V
Clamping Voltage	Vc			6	V	IPP = 1A
Clamping Voltage	Vc			10	V	IPP = 20A
Junction Capacitance	Cı		40		pF	VR = 0V, f = 1MHz

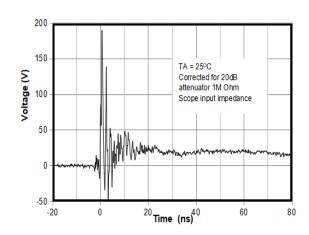

Typical Performance Characteristics (T_A=25°C unless otherwise Specified)



Junction Capacitance vs. Reverse Voltage



Clamping Voltage vs. Peak Pulse Current (tp = 8/20µs)

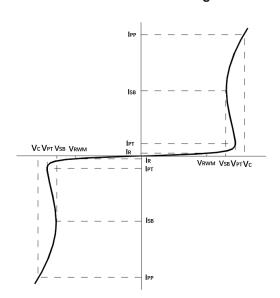


Peak Pulse Power vs. Pulse Time

TLP Curve

ESD Clamping Voltage 8 kV Contact per IEC61000-4-2

Applications Information


Device Connection Options

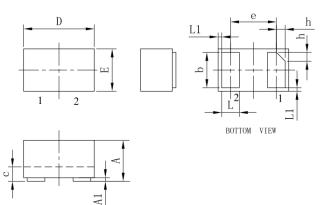
The AU3341P1 is designed to protect one data or I/O line operating at 3.3 volts. It will present a high impedance to the protected line up to 3.3 volts. It will "turn on" when the line voltage exceeds 4 volts. These devices should not be connected to DC supply rails as they can latch up as described below.

Due to the "snap-back" characteristics of the low voltage TVS, it is not recommended that the I/O line be directly connected to a DC source greater than snap-back voltage (V_{SB}) as the device can latch on as described below.

Device Schematic & Pin Configuration

EPD TVS IV Characteristic Curve

EPD TVS Characteristics


The structure of the EPD TVS is vastly different from the traditional pn-junction devices. At voltages below 5V, high leakage current and junction capacitance render conventional avalanche technology impractical for most applications. However, by utilizing the EPD technology, the AU3341P1 can effectively operate at 3.3V while maintaining excellent electrical characteristics.

The EPD TVS employs a complex nppn structure in contrast to the pn structure normally found in traditional silicon-avalanche TVS diodes. Since the EPD TVS devices use a 4-layer structure, they exhibit a slightly different IV characteristic curve when compared to conventional devices. During normal operation, the device represents a high-impedance to the circuit up to the device working voltage (VRWM). During an ESD event, the device will begin to conduct and will enter a low impedance state when the punch through voltage (V_{PT}) is exceeded. Unlike a conventional device, the low voltage TVS will exhibit a slight negative resistance characteristic as it conducts current. This characteristic aids in lowering the clamping voltage of the device, but must be considered in applications where DC voltages are present.

When the TVS is conducting current, it will exhibit a slight "snap-back" or negative resistance characteristics due to its structures. This point is defined on the curve by the snap-back voltage (V_{SB}) and snap-back current (I_{SB}). To return to a non-conducting state, the current through the device must fall below the I_{SB} (approximately <50mA) and the voltage must fall below the V_{SB} (normally 3.5 volts for a 3.3V device).

DFN1006-2 Package Outline Drawing

	DIMENSIONS						
	MILLIMETERS			INCHES			
SYM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.45	0.50	0.55	0.018	0.020	0.022	
A1	0.00	0.02	0.05	0.000	0.001	0.002	
b	0.45	0.50	0.55	0.018	0.020	0.022	
С	0.12	0.15	0.18	0.005	0.006	0.007	
D	0.95	1.00	1.05	0.037	0.039	0.041	
е	0.65 BSC			0.026 BSC			
Е	0.55	0.60	0.65	0.022	0.024	0.026	
L	0.20	0.25	0.30	0.008	0.010	0.012	
L1	0.05REF			0.002REF			
h	0.07	0.12	0.17	0.003	0.005	0.007	

Suggested Land Pattern

SYM	DIMENSIONS			
	MILLIMETERS	INCHES		
Х	0.60	0.024		
Y1	0.50	0.020		
Y2	0.30	0.012		
Y3	0.80	0.032		
Z	1.30	0.052		

Contact Information

Applied Power Microelectronics Inc.

Website: http://www.appliedpowermicro.com

Email: sales@appliedpowermicro.com

Phone: +86 (0519) 8399 3606

Applied Power Microelectronics Inc. (APM) reserves the right to make changes to the product specification and data in this document without notice. APM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does APM assume any liability arising from the application or use of any products or circuits, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.