

Description

The APO3105ASDNA Over-Voltage Protection device features a very low $R_{\text{DS_ON}}$ resistance, typical $45m\Omega,$ internal nFET for USB VBUS line. The nFET switch ensures safe and right current flow in both charging and host modes such as OTG while protecting the internal system circuits from any over voltage conditions. Overvoltage threshold can be adjusted externally with a resistor divided network, or set internally by the built-in value.

The device features an open-drain output nACK, when $V_{\text{IN_UVLO}} < V_{\text{IN}} < V_{\text{IN_OVLO}}$ and the switch is on, nACK will be driven low to indicate a good power input, otherwise it is high impedance.

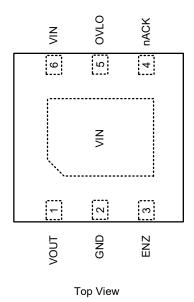
This device features over-temperature protection that prevents itself from thermal damaging.

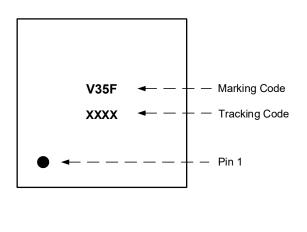
The APO3105ASDNA is available in a RoHS and Green compliant DFN2x2-6L package.

Applications

- Mobile Handsets
- Tablets
- Wearable Devices
- Charging Ports

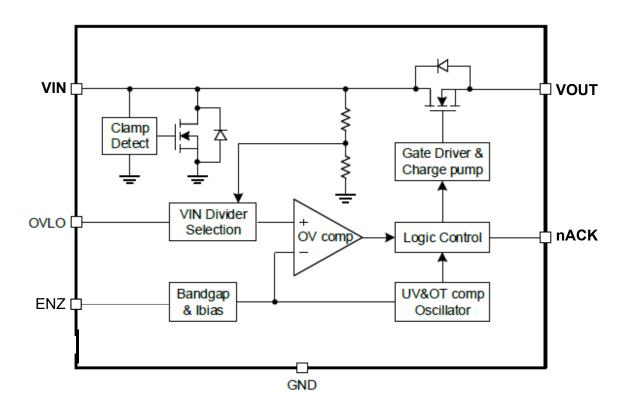
Features


- Fast OVP response with typical 60ns
- A low R_{DS ON} 42mΩ (typ.) n-Channel MOSFET
- Very fast over voltage response with typical 60ns
- Adjustable OVP Threshold from 4V to 16V
- Default Threshold Voltage
 - ♦ 6.0V for APO3105ASDNA
- VBUS DC Input Voltage Range : 2.8V ~ 32V
- VBUS Pulse Input Voltage Peak: <35V
- 4A Max Continuous Current Capability
- Enable function is active low
- No inrush current design
- OTG Functionality on VBUS Path
- Active-low Switch Status Indicator Output
- DFN2x2-6L package

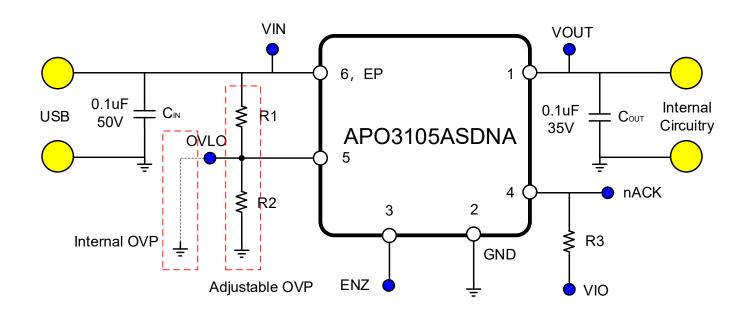

Device Comparison Table and Ordering Information

Part	Package	Operation Ambient Temperature	Shipping Option	Marking	V _{IN_OVLO}
APO3105ASDNA	DFN-2x2-6L	-40°C ~ 85°C	3000/Tape & Reel	V35FXXXX	6.0V

Pin Configuration and Top Mark


Top Mark

Pin Assignments


Pin	Name	Description
1	V _{OUT}	Output Voltage: bypass with a $0.1\mu F/35V$ ceramic capacitor as close to the device as possible. Capacitor breakdown voltage selected is depended on OVLO threshold set.
2	GND	Ground
3	ENZ	Enable pin: active low
4	nACK	Open-Drain Active-Low Output : Active-low logic output. It needs an external pull-up resistor, e.g. $10k\Omega \sim 470~k\Omega$, to the System I/O. If not used, leave it open or tied to ground.
5	OVLO	OVP Threshold Adjustment: Connect the pin to ground to use a fixed internal threshold. Connect a resistor-divider to set a different threshold between 4V and 16V.
6	V _{IN}	Voltage Input: bypass with a 0.1µF/50V ceramic capacitor as close to the device as possible.
EP	V _{IN}	Voltage Input: Need to short to Pin 6 with wide metal trace.

Functional Block Diagram

Typical Application Circuit

Absolute Maximum Ratings (T_A = 25°C unless otherwise specified)

Parameter	Symbol	Min	Max	Unit
Input DC voltage	V _{IN}	-0.3	35	V
Output voltage	V _{OUT}	-0.3	18	V
OVLO voltage	V _{OVLO}	-0.3	7	V
nACK voltage	V _{ACK}	-0.3	7	V
ENZ voltage	V _{ENZ}	-0.3	7	V
Switch current (Continuous current)	I _{IN}		4	Α
Ambient temperature	T _A	-20	85	°C
Junction temperature	TJ	-40	125	°C
Storage temperature	T _{STG}	-55	150	°C
Soldering temperature (At leads, 10 seconds)	T _{LEAD}		260	°C

Thermal Information

Parameter	Symbol	Value	Unit
Thermal resistance from junction to ambient (In free air)	R _{⊝JA}	70	°C/W

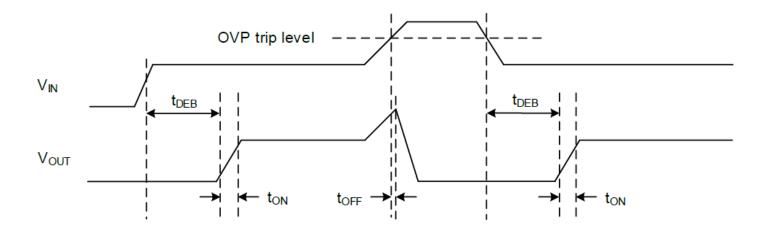
Operating Conditions

Parameter	Symbol	Min	Max	Unit
Input DC Voltage	Vin	2.8	32	V
Input Capacitance	CIN	0.1		μF
Output Load Capacitance	Соит	0.1	220	μF
Human Body Model		-4	4	kV
Charged Device Model	VESD	-2	2	kV
Latch-up	ILatch-up	-200	200	mA

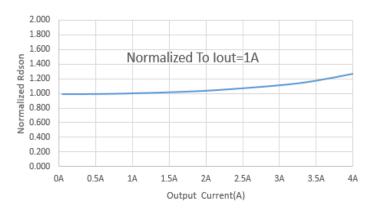
Electrical Characteristics ($V_{IN} = 5V$, $T_A = 25$ °C unless otherwise specified)

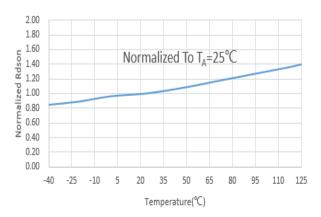
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Switch on resistance	RDS_ON	VIN = 5V, IOUT = 1A		42	55	mΩ
Switch on resistance	NDS_ON	VIN = 3.3V, IOUT = 1A		49	10 μΑ	mΩ
Shutdown current	I _{SD}	V _{IN} = 5V, ENZ floating		5	10	μA
Input quiescent current	lq	VIN = 5V, VOVLO = 0V, IOUT = 0A		115	145	μA
Input current at over-voltage condition	lin_ovlo	VIN = 5V, VOVLO = 3V, VOUT = 0V		103	130	μΑ
LIVI O trip lovel	Vacando	V _{IN} rising			2.8	V
UVLO trip level	VIN_UVLO	Vเง falling	2.0			V
ENZ high input voltage	V _{IH}		1.2			V
ENZ low input voltage	V _{IL}				0.4	V

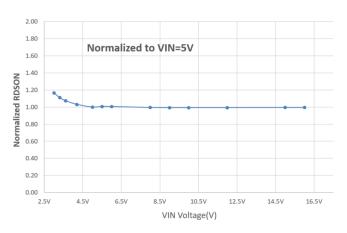
Electrical Characteristics (T_A = 25°C unless otherwise specified)

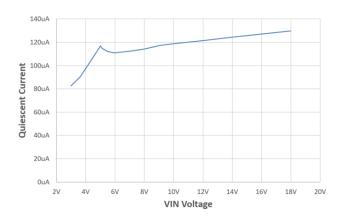

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
Protection								
OVD tries level	\(\frac{1}{2} \)	Vin rising		6				
OVP trip level	VIN_OVLO	Hysteresis		0.15	0.32 V	V		
External OVLO select threshold	Vovlo_sel	OVLO Rising	0.26	0.29	0.32	V		
	VOVLO_SEL	Hysteresis		0.04		V		
OVLO set threshold	Vovlo_th		1.16	1.20	1.24	V		
OVP threshold adjustable range	Vovlo_rn g		4		16	V		
OVLO pin leakage current	lovLo	Vovlo = Vovlo_th	-0.1		0.1	μA		
Shutdown temperature	Tsdn			140		°C		
Shutdown temperature hysteresis	TSDN_HYS			30		°C		

Electrical Characteristics (T_A = 25°C unless otherwise specified)

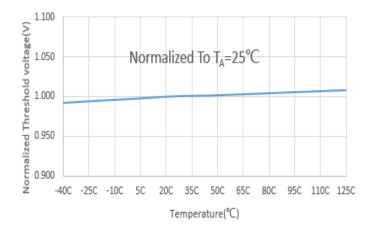

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Timing Characteristics						
Debounce time	t DEB	From $V_{IN} > V_{IN_UVLO}$ to 10% V_{OUT}		23	30	ms
Switch turn-on time	ton	R_{OUT} = 100 Ω , C_{OUT} = 0.1 μ F, V_{OUT} from 10% V_{IN} to 90% V_{IN}		305		μs
Switch turn-off time	toff	$R_{OUT} = 100~\Omega, C_{OUT} = 0.1 \mu F, V_{IN} > \\ V_{IN_UVLO}~to~V_{OUT}~stop~rising,~V_{IN}~rise \\ at~10V/\mu s$		60		ns


Timing Diagram


Typical Performance Characteristics ($V_{IN} = 5V$, $C_{IN} = C_{OUT} = 0.1 \mu F$, $T_A = 25 ^{\circ}C$)

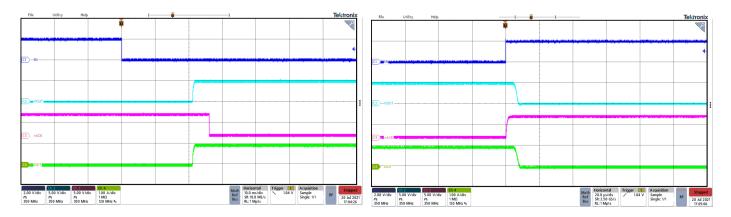


Normalized R_{DS ON} vs Output Current. (V_{IN}=5V)


Normalized R_{DS_ON} vs Temp. (I_{OUT}=1A)

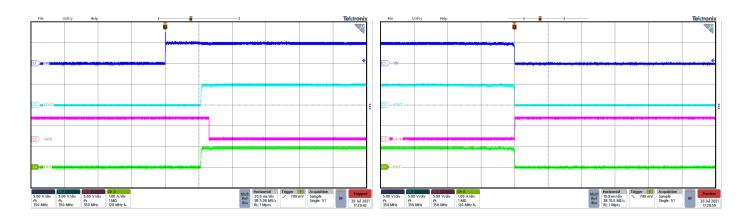
Normalized R_{DS_ON} vs Input Voltage (I_{OUT}=1A)

Input Supply Current vs Supply Voltage

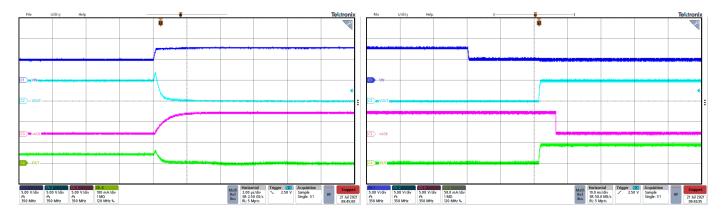


Normalized Internal OVP Threshold

Revision 1.0 8 of 14 www.appliedpowermicro.com



Typical Performance Characteristics (V_{IN}= 5V, C_{IN}= C_{OUT}= 0.1 μ F, R_{OUT} = 100 Ω , OVLO = GND T_A = 25°C, V_{IO}= 5V, R₃ = 47K Ω)


EN ON with 5Ω Load

EN OFF with 5Ω Load

Power on with 5Ω Load

Power off with 5Ω Load

OVP Response

Recovery from OVP

Revision_1. 0 9 of 14 www.appliedpowermicro.com

Typical Application circuit

Fixed OVP circuit

Adjustable OVP circuit

Revision_1. 0 10 of 14 www.appliedpowermicro.com

Functional Description

Device Operation

If the input voltage is between UVLO and OVP threshold, the internal charge pump begins to work after debounce time, the gate of the nFET switch will be slowly charged high till the switch is fully on. If the input voltage exceeds the OVP trip level, the switch will be turned off in about 90ns. If input voltage falls below UVLO threshold, or over-temperature happens, the switch will also be turned off.

Over-Voltage Protection

If the input voltage exceeds the OVP rising trip level, the switch will be turned off in typical 55ns. The switch will remain off until V_{IN} falls below the OVP falling trip level.

OVP Threshold Adjustment

If OVLO pin is not grounded, and by connecting external resistor divider to OVLO pin as shown in the typical application circuit, between IN and GND, the OVP threshold can be set as following formula:

$$V_{IN_OVLO} = (R_1+R_2) / R_2 * V_{OVLO_TH}$$

The adjustment range is 4V to 16V. When the OVLO pin voltage VovLo exceeds VovLo_SEL (0.29V typical), VovLo is compared with the reference voltage VovLo TH (1.2V typical) to judge whether input supply is over-voltage.

USB On-The-Go (OTG) Operation

If V_{IN} = 0V and OUT is supplied by OTG voltage, the body diode of the load switch conducts current from OUT to IN and the voltage drop from OUT to IN is approximately 0.7V. When V_{IN} > V_{IN_UVLO} , internal charge pump begins to open the load switch after debounce time. After switch is fully on, current is supplied through switch channel and the voltage drop from OUT to IN is minimum.

Load Switch Status Indicator

The device has a load switch status indicator to notify load switch on/off status to other devices. When load switch is on status, the device pulls nACK pin down to the GND. To avoid glitch during power up, it is recommended to limit rising slew rate at VIN less than 1V/uS or de-assert ENZ after power-up.

Enable function

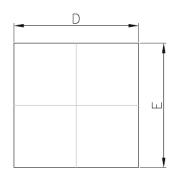
The device has a enable pin that it is available with active low. When it is active high, the device will enter ECO mode with typical 2uA low standby current.

Thermal Protection

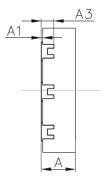
The device has an Over-Temperature Protection circuit to protect device against system fault or improper use. When the junction temperature exceeds the threshold, 145°C typical, the device shuts down and stays off until the temperature cools down to a safe region (below falling threshold). Once the falling threshold, the device will automatically resume the normal operation with embedded timings.

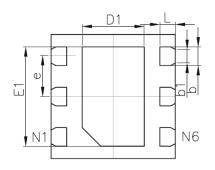
Device Operation Summary

Conditio	ns	•			
V _{IN}	V _{OUT}	Current Direction	nFET	nACK	Mode
< OVP Threshold	< V _{IN}	$V_{IN} \rightarrow V_{OUT}$	On	Low	Charge
< OVP Threshold	> V _{IN}	$V_{OUT} \rightarrow V_{IN}$	On	Low	OTG
≥ OVP Threshold	< V _{IN}	No Current flowing	Off	Hi-z	OVP
≥ OVP Threshold	> V _{IN}	$V_{OUT} \rightarrow V_{IN}$ (via the junction body diode)	Off	Hi-z	OVP
< UVLO Threshold	< V _{IN}	No Current flowing	Off	Hi-z	UVLO
Don't Care	Don't Care	No Current flowing	Off	Hi-z	Thermal Shutdown



PCB Layout Consideration


- 1. All the peripherals should be placed as close to the device as possible. Place the input capacitor C_{IN} on the top layer and close to V_{IN} pin, and place the output capacitor C_{OUT} on the top layer and close to V_{OUT} pin.
- 2. Exposed Pad (EP) connects to V_{IN}, which is USB connector, and conducts large current during normal operation as well as surge protection. Route it out as straight, wide and short as possible. Also keep other traces away from it to minimize possible EMI coupling.
- GND pin 2 conducts large current during surge protection. Make sure no signal trace blocks the path for current flow.
- 4. Use rounded corners on the power trace to decrease EMI.
- 5. If R_1 and R_2 are used, route OVLO line as short as possible to reduce parasitic capacitance.


Package Outline Drawing

TOP VIEW

SIDE VIEW

BOTTOM VIEW

Symbol	Dimensions Ir	n Millimeters	Dimension	s In Inches	
Symbol	Min	Max	Min	Max	
Α	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A3	0.203F	REF.	0.008	REF.	
D	1.900	2.100	0.075	0.083	
ш	1.900	2.100	0.075	0.083	
D1	0.900	1.100	0.035	0.043	
E1	1.500	1.700	0.059	0.067	
b	0.250	0.350	0.010	0.014	
b1	0.220	REF.	0.009 REF.		
е	0.650	BSC.	0.026 BSC.		
L	0.174	0.326	0.007	0.013	

Contact Information

Applied Power Microelectronics Inc.

Website: http://www.appliedpowermicro.com

Email: sales@appliedpowermicro.com

Phone: +86 (0519) 8399 3606

Applied Power Microelectronics Inc. (APM) reserves the right to make changes to the product specification and data in this document without notice. APM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does APM assume any liability arising from the application or use of any products or circuits, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.