Description

The APL0501ASTA device is a low Ron MOSEFT controlled by external logic pin, allowing optimization of battery life, and portable device autonomy. It includes a P-channel MOSFET that operates over an input voltage range of 1.5 V to 5.5 V . An on/off input (EN) controls the switch that can interface with low voltage control signals. A 130Ω on chip load resistor is added for output quick discharge when the switch is turned off.

The APL0501ASTA is packaged in compact SOT-236 L . It is characterized for operation over the free-air temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Applications

- Cellular Phones
- GPS Devices
- Digital Cameras
- Peripheral Ports
- Portable Instrumentation
- RF Modules
- Personal Digital Assistants (PDAs)
- MP3 Players

Features

- Low-Input Voltage: 1.2 V to 5.5 V
- ON-State Resistance
- $R_{\mathrm{ON}}=150 \mathrm{~m} \Omega$ at $\mathrm{VIN}=5.0 \mathrm{~V}$
- $\mathrm{R}_{\mathrm{ON}}=153 \mathrm{~m} \Omega$ at $\mathrm{VIN}=4.2 \mathrm{~V}$
- $\mathrm{R}_{\mathrm{ON}}=156 \mathrm{~m} \Omega$ at $\mathrm{VIN}=3.6 \mathrm{~V}$
- $\mathrm{R}_{\mathrm{ON}}=168 \mathrm{~m} \Omega$ at $\mathrm{VIN}=2.5 \mathrm{~V}$
- $\mathrm{R}_{\mathrm{ON}}=192 \mathrm{~m} \Omega$ at $\mathrm{VIN}=1.8 \mathrm{~V}$
- $\mathrm{R}_{\mathrm{ON}}=260 \mathrm{~m} \Omega$ at $\mathrm{VIN}=1.2 \mathrm{~V}$
- DC Current Up to 1.5 A
- Ultra-Low Quiescent Current: 80nA at 1.8 V
- Ultra-Low Shutdown Current: 7.5 nA at 1.8 V
- Low Control Input Thresholds Enable Use of 1.2V/1.8V/3.6V/4.2V/5.0V Logic
- Controlled Slew Rate to Decrease Input Inrush

Current

- Reverse Current Protection
- Package: SOT-23-6L

Typical Application

Package and Order Information

Part Number	Package Description	Temperature Range	Packaging Option	Marking Information
APL0501ASTA	SOT-23-6L	$-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$	$3000 /$ Tape \& Reel	L5AXX

Pin Configuration and Top Mark

Pin Assignments

Name	Pin NO.	
VOUT	Pin1	Switch output
GND	Pin2	GND
GND	Pin3	GND
EN	Pin4	Switch control input, active high
NC	Pin5	No connect
VIN	Pin6	Switch input, a bypass capacitor should be connected to ground together with it

Functional Block Diagram

Symbol	Parameter		Rating	Unit
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.3 to 6	V
$\mathrm{V}_{\text {OUT }}$	Output voltage		$\mathrm{V}_{\text {IN }}+0.3$	V
$V_{\text {ON }}$	Input voltage		-0.3 to 6	V
P_{D}	Power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.48	W
$\mathrm{I}_{\text {max }}$	Maximum Continuous Switch Current	VIN $\geq 1.8 \mathrm{~V}$	1.5	A
		$1.5 \mathrm{~V} \leq \mathrm{VIN}<1.7 \mathrm{~V}$	1.4	
		$1.3 \mathrm{~V} \leq \mathrm{VIN}<1.4 \mathrm{~V}$	1.2	
		$\mathrm{VIN}=1.2 \mathrm{~V}$	1.0	
$\mathrm{T}_{\text {A }}$	Operating free air temperature range		-40 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {LEAD }}$	Maximum lead temperature (10s soldering time)		300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-45 to 145	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance		185	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	HBM: All Pins		± 4000	V
	CDM		± 1000	
Latch up			± 200	mA

Recommend Operating Conditions

Symbol	Parameter	Rating	Unit
$\mathrm{V}_{\mathbb{N}}$	Input voltage range	1.2 to 5.5	V
Vout	Output voltage range	V IN	V
C_{IN}	Input capacitor	1	$\mu \mathrm{~F}$

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Conditions		Min.	Tур.	Max.	Unit
lQ	Quiescent current	lout $=0, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {EN }}$	$\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$	40	75	130	nA
			$\mathrm{VIN}_{\text {I }}=1.8 \mathrm{~V}$		80		
			$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$	90	119	250	
			$\mathrm{V}_{\text {IN }}=4.2 \mathrm{~V}$		142		
			$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$	150	188	350	
Isd	OFF-state supply current	$\begin{aligned} & V_{\text {EN }}=G N D, \\ & V_{\text {OUT }}=O p e n \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$		7	20	nA
			$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$		7.5		
			$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$		10	30	
			$\mathrm{V}_{\mathrm{IN}}=4.2 \mathrm{~V}$		12		
			$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$		20	50	
Ilkg	OFF-state supply current	$V_{\text {EN }}=$ GND, Vout $=0$	$\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$		7.5		nA
			$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$		8		
			$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$		10		
			$\mathrm{V}_{\mathrm{IN}}=4.2 \mathrm{~V}$		12.5		
			$\mathrm{VIN}_{\text {I }}=5.0 \mathrm{~V}$		20.5		
Ron	ON-state resistance	lout $=-100 \mathrm{~mA}$	$\mathrm{VIN}_{\text {I }}=1.2 \mathrm{~V}$		260		$\mathrm{m} \Omega$
			$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$		192		
			$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$		168		
			$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$		156		
			$\mathrm{V}_{\text {IN }}=4.2 \mathrm{~V}$		153		
			$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$		150		
Irev	Reverse current during disable	$\mathrm{V}_{\text {OUT }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$			14		nA
Ron_PD	EN pull down resistance				100		$\mathrm{M} \Omega$
RPD	Output pull down resistance	$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {on }}=0$			130	150	Ω
VIH	High level input voltage	$\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$ to 5.5 V		1.0			V
VIL	Low level input voltage	$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}$ to 5.5 V				0.5	V

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Conditions		Min.	Tур.	Max.	Unit
$\mathrm{V}_{1 \mathrm{~N}}=1.2 \mathrm{~V}$							
t_{ON}	Turn on time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		370		$\mu \mathrm{s}$
$t_{\text {OFF }}$	Turn off time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		10		$\mu \mathrm{s}$
t_{R}	VOUT rise time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		29		$\mu \mathrm{s}$
$t_{\text {F }}$	VOUT fall time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		26		μs
$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$							
t_{ON}	Turn on time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		145		$\mu \mathrm{s}$
$t_{\text {OFF }}$	Turn off time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		13		$\mu \mathrm{s}$
t_{R}	VOUT rise time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		46		$\mu \mathrm{s}$
$t_{\text {F }}$	VOUT fall time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		27		$\mu \mathrm{s}$
$\mathrm{V}_{1 \mathrm{~N}}=3.6 \mathrm{~V}$							
t_{ON}	Turn on time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		117		$\mu \mathrm{s}$
$\mathrm{t}_{\text {OFF }}$	Turn off time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		14		$\mu \mathrm{s}$
t_{R}	VOUT rise time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		110		$\mu \mathrm{s}$
$t_{\text {F }}$	VOUT fall time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		26		$\mu \mathrm{s}$
$\mathrm{V}_{1 \mathrm{~N}}=4.2 \mathrm{~V}$							
t_{ON}	Turn on time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		119		$\mu \mathrm{s}$
$\mathrm{t}_{\text {OFF }}$	Turn off time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		14		μs
t_{R}	VOUT rise time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		130		$\mu \mathrm{s}$
t_{F}	VOUT fall time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		26		$\mu \mathrm{s}$
$\mathrm{V}_{1 \mathrm{IN}}=5 \mathrm{~V}$							
t_{ON}	Turn on time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		119		$\mu \mathrm{s}$
$t_{\text {OFF }}$	Turn off time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		14		$\mu \mathrm{s}$
t_{R}	VOUT rise time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		140		μs
t_{F}	VOUT fall time	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		25		$\mu \mathrm{s}$

Typical Performance Characteristics ($\mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}$, $\mathrm{C}_{\text {out }}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{OUT}}=10 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Typical Performance Characteristics ($\mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {out }}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{OUT}}=10 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

$\mathrm{V}_{\mathbb{N}}=3.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=1.2 \mathrm{~V}$
V_{EN} ON Response with 10Ω load

$\mathrm{V}_{\mathbb{N}}=3.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=1.2 \mathrm{~V}$

$\mathrm{V}_{\mathbb{I N}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=1.2 \mathrm{~V}$

$\mathrm{V}_{\mathbb{I N}}=3.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=1.2 \mathrm{~V}$
$\mathrm{V}_{\text {EN }}$ OFF Response with 10Ω load

$\mathrm{V}_{\mathbb{I}}=3.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=1.2 \mathrm{~V}$
V_{EN} OFF Response w/o load

$\mathrm{V}_{\mathbb{I}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=1.2 \mathrm{~V}$

Typical Performance Characteristics ($\mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {out }}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{OUT}}=10 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

$\mathrm{V}_{\mathbb{I N}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=1.2 \mathrm{~V}$
V_{IN} Power ON w/o load

$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EN}}=3.7 \mathrm{~V}$

$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\text {EN }}=3.7 \mathrm{~V}$
V_{EN} OFF Response with 10Ω load

$\mathrm{V}_{\mathbb{I N}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=1.2 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Power OFF w/o load

$$
\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\text {EN }}=3.7 \mathrm{~V}
$$

$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {EN }}=3.7 \mathrm{~V}$

Typical Performance Characteristics ($\mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}$, $\mathrm{C}_{\text {out }}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{OUT}}=10 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

V_{IN} Power ON with 10Ω load

$\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{\mathrm{EN}}=1.8 \mathrm{~V}$
Reverse Protection with 10Ω load

$\mathrm{V}_{\text {IN }}$ Power OFF w/o load

$\mathrm{V}_{\text {IN }}$ Power OFF with 10Ω load

$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EN}}=1.8 \mathrm{~V}$
Reverse Protection Recovery with 10Ω load

Functional Description

Device Operation

The APL0501ASTA is a low on-resistance $\left(R_{\text {ON }}\right)$ load switch with controlled turn on, up to 1.5 A output current. It contains a P-channel MOSFET and can be turned on with a wide range application of battery from 1.5 V to 5.5 V . An on/off input (EN) controls the switch, which can interface with low-threshold 1.2 V GPIO control signal. A 130Ω on-chip output resistor is added for output quick discharge when the switch is switched off.

ON/OFF Control

The pin of EN controls the state of the switch. EN is active HI pin and has a low threshold making it capable of interfacing with low voltage GPIO control signals. It can be used with any microcontroller with $1.2 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}$ GPIOs. Applying VIH on the EN pin will put the switch in the on-state and VIL will put the switch in the off-state.

EN (Control Input)	VIN to VOUT	Quick Output Discharge Resistance
L	OFF	Yes
H	ON	No

Reverse Current Protection

The device includes a reverse current protection circuit, which stops a reverse current flowing from the VOUT pin to the VIN or GND pin when the voltage on VOUT becomes higher than VIN. This feature is particularly useful when the output of device needs to be driven by another voltage source, whichever device is both disabled and enabled (for example in a power multiplexer application). In order for this feature to work, device has to be disabled, and either of the following conditions shall be met: VIN $>1.2 \mathrm{~V}$ or VOUT $>1.2 \mathrm{~V}$. Meanwhile considering of heat dissipation, VIN input voltage should be limited less than 4.8 V voltage when VEN is active high.

Figure 1

Functional Description (Continued)

Quick Output Discharge

The APL0501ASTA integrates the quick output discharge (QOD) feature. When the switch is disabled, a discharge resistance with a typical value of 130Ω is connected between the output and ground. This resistance pulls down the output and quickly discharges output capacitor charge, and prevents it from floating when the device is disabled.

Input Bypass Capacitor

A low ESR ceramic capacitor, X5R or X7R, needs to be placed between VIN and GND to limit the voltage drop on the input supply caused by transient in-rush currents. A typical $1 \mu \mathrm{~F}$ ceramic capacitor, C_{IN}, placed close to the pins is usually needed. $\mathrm{C}_{\mathbb{N}}$'s higher values can be used to further reduce the voltage drop during high current output application. It is recommended that the input capacitor is approximately 10 times higher than the output capacitor to prevent excessive voltage drop when switching heavy loads.

Output Bypass Capacitor

A low ESR ceramic capacitor, X5R or X7R, should be placed between VOUT and GND. A $0.1 \mu \mathrm{~F}$ ceramic capacitor that is placed close to the IC pins is usually sufficient. This capacitor will prevent parasitic board inductances from forcing VOUT below GND when the switch turns off. It is recommended that $\mathrm{C}_{\mathbb{N}}$ is 10 times higher than $\mathrm{C}_{\text {out }}$ so that once the switch is turned on, COUT can be charged up to VIN without VIN dropping significantly.

Power Supply Sequencing without a GPIO Input Control Port

In many terminal devices, each module needs to be powered up in a pre-determined manner. The device can solve the power sequencing problem without increasing any complexity to the overall system. Figure 2 shows the configuration required to power up the two modules in a fixed sequence. The output of the first load switch is tied to the enable of the second load switch, so when load1 is powered, the second load switch is enabled and load2 is powered.

Figure 2

Package Outline Drawing

TOP VIEW
［顶视图］

SIDE VIEW
［侧视图］

BOTTOM VIEW
［背视图］

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min．	Max．	Min．	Max．
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
c	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E1	1.500	1.700	0.059	0.067
E	2.650	2.950	0.104	0.116
e	0．950（BSC．）		0．037（BSC．）	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
L1	0．600REF．		0．024REF．	
θ	0°	8°	0°	8°

Contact Information

Applied Power Microelectronics Inc．
Website：http：／／www．appliedpowermicro．com
Email：sales＠appliedpowermicro．com
Phone：＋86（0519） 83993606

