

1.0-K-PEL

All dimensions are in mm; tolerances according to ISO 2768 m-H

Configuration

1.0 male interface	IEC 61169-31
Connector Material:	
-Outer contact	Stainless steel, Passivated
-Center contact	CuBe, Gold plating
-Insulator	PEI or equivalent
-Body & Plate	Brass, Gold plating

1/3

昆山德普福电子科技有限公司 KUNSHAN DLOORPLF ELECTRONIC TECHNOLOGY CO., LTD

1.0 female for PCB end launch

Electrical Characteristics

Impedance	50 Ω
Frequency Range	DC to 110 GHz
Retention loss	\geq 19 dB, DC to 40 GHz
	\geq 15 dB, 40 GHz to 67 GHz
	➢ 10 dB, 67 GHz to 110 GHz
Insertion Loss	≤ 0.05 x √f (GHz) dB

Notice: RL&IL in application depends decisive on PCB layout

Mechanical Properties

Mating cycles PCB side	≥ 300
Mating cycles RPC-1.00 side	≥ 500
Recommended torque of 1.0 connector	0.30 Nm to 0.41 Nm
PCB thickness max.	1.5 mm typical; dimension expandable with longer screws

Environment Data

Working Temperature	-40℃ to +85℃
RoHS	Compliant

PCB layout dimensions

 ${\mathbb S}$ = Space/Gap between signaling path and ground plane W = width of signal path

Notice:

The given layout is not optimized to fit all of the possible board configurations regarding RF-performance, it represent a recommendation for optimum solderability of the connector. In order to guarantee optimum high frequency properties of the connector, an RF-analysis of the connector to board translation is recommended.

CONTACT US sales@dpfcable.com http://www.dloorplf.com KUNSHAN DLOORPLF ELECTRONIC TECHNOLOGY CO., LTD

1.0 female for PCB end launch

Center contact position

Figure 1,2,3 described the mounted solderless PCB connector on the Test PCB. Check the positioning of the center contact on the contact are under a microscope.

Make sure that the center contact is positioned as centrally as possible (as shown in Figure 3, green frame) to get a good result.

If the positioning is bad (Figure 1, red frame) or moderate (Figure 2, orange frame), loosen the screws slightly and reposition the solderless PCB connector to reach a position like shown in Figure 3 and tighten the screws slightly.

Figure 2: bad positioning

Figure2: moderate positioning

Figure 3: good positioning

Order Information

Dloorplf P/N	Dloorplf Description
1.0-K-PEL	1.0 female for PCB end launch, DC to 110GHz, solderless type

