VAHTS AmpSeq Library Prep Kit V2

NA201

使用说明书 Version 22.1

目录Contents

01/产品概述	. 02
02/产品组分	02
03/保存条件	02
04/适用范围	02
05/自备材料	. 03
06/注意事项	. 03
07/实验原理与流程概要	. 03
08/实验流程	05
08-1/多重PCR ······	05
08-2/消化部分引物序列	. 06
08-3/扩增子接头连接与文库纯化	· 07
08-4/文库扩增与纯化	. 08
08-5/文库质量控制	. 06
09/常见问题与解决方案	· 10

01/产品概述

VAHTS AmpSeq Library Prep Kit V2是以超多重PCR为基础,引入末端引物消化等多个核心技术,连接接头形成文库的一款扩增子建库试剂盒。本试剂盒建库全程在一管内进行,中间无纯化步骤,从扩增到生成文库,时间低至5 h,其中手动操作时间小于1.5 h。本试剂盒起始模板量为1 - 100 ng,兼容基因组DNA、FFPE样本、cfDNA等模板。本试剂盒适用于Illumina和Ion Torrent 两种主流高通量测序平台,并提供配套接头(Vazyme #NA111系列和Vazyme #NA121系列),可适用的Panel包括Ion Ampliseg 系列Panel和AmpliSeg for Illumina系列Panel,以及相应的个性化定制Panel。

相比于上一代产品(Vazyme #NA101),本试剂盒在保证扩增子文库高覆盖度和高均一度的基础上,对FFPE、cfDNA等困难样本兼容性有了极大提高,优化的多重扩增Mix减少了移液操作,建库结果更加稳定、可靠,帮助研究者和检测人员简便、快速、高质量地完成扩增子建库。试剂盒中提供的所有试剂均经过了严格的质量控制和功能验证,最大程度上保证了文库构建的稳定性和重复性。

02/产品组分

组分		NA201-01 (24 rxns)	NA201-02 (96 rxns)	
	5 × VAHTS Multi-PCR Mix	96 µl	384 µl	
	VAHTS Digest Mix 2	48 μΙ	192 μΙ	
	VAHTS Ligation Enhancer	144 μΙ	576 µl	
	VAHTS Ligation Enzyme Mix 2	24 μΙ	96 µl	
	VAHTS HiFi Amplification Mix	600 µl	4 × 600 µl	
	PCR Primer Mix for Ion Torrent	120 μΙ	480 µl	
	PCR Primer Mix for Illumina	120 μΙ	480 µl	
	TE	1 ml	4 × 1 ml	

03/保存条件

-30~-15℃保存,≤0℃运输。

04/适用范围

本产品适用于起始DNA模板量为1-100 ng的扩增子建库反应,兼容不同样品类型来源的DNA模板:

- ◇ 细胞或组织提取的DNA;
- ◇ 福尔马林固定石蜡包埋(FFPE)样本提取的DNA;
- ◇ 细胞游离DNA(cell-free DNA, cfDNA)等。

05/自备材料

建库试剂: VAHTS AmpSeq Adapters for Illumina/Ion Torrent (Vazyme #NA111/NA121);

纯化磁珠: VAHTS DNA Clean Beads (Vazyme #N411);

文库评价: Equalbit dsDNA HS Assay Kit (Vazyme #EQ111);

VAHTS Library Quantification Kit for Illumina (Vazyme #NQ101-106);

Agilent Technologies 2100 Bioanalyzer或其他等效产品及配套试剂;

其他材料:新鲜配制的80%乙醇、Nuclease-free ddH2O;

RNase-free PCR管、低吸附EP管;

PCR仪、磁力架等。

06/注意事项

本产品仅供科学研究使用,不得用于临床医学诊断及其他非合理用途。

- ◇ 本产品检测灵敏度高,为避免污染,第一步PCR与后续步骤应在不同的洁净区域完成。
- ◇ 本产品中所有组分应储存于无核酸和核酸酶污染的环境中,以免导致实验失败。
- ◇ 如果您是首次操作该方案,推荐同时设置阳性与阴性对照。
- ◇ 5 × VAHTS Multi-PCR Mix、VAHTS Digest Mix 2、VAHTS Ligation Enzyme Mix 2等置于冰上解冻;除VAHTS Ligation Enhancer之外的所有组分在实验过程中保持冰上放置。
- ◇ 配套接头请勿置于高于室温的环境,以防止双链接头解链。
- ◇ VAHTS Ligation Enhancer融化后如果出现白色沉淀,请在室温条件下反复颠倒混匀重悬, 待沉淀全部溶解后使用。若仍有沉淀,可置于55℃水浴溶解。
- ◇ 5 × VAHTS Multi-PCR Mix、VAHTS Ligation Enhancer 等较为粘稠,使用前请务必上下颠倒混匀、短暂离心,并慢慢吸取这些组分。

07/实验原理与流程概要

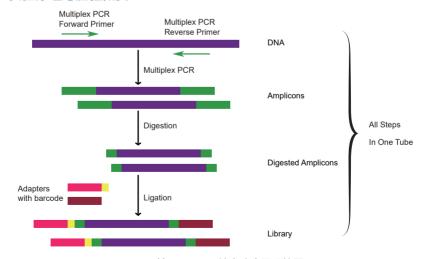


Fig 1. 基于AmpSeg技术建库原理简图

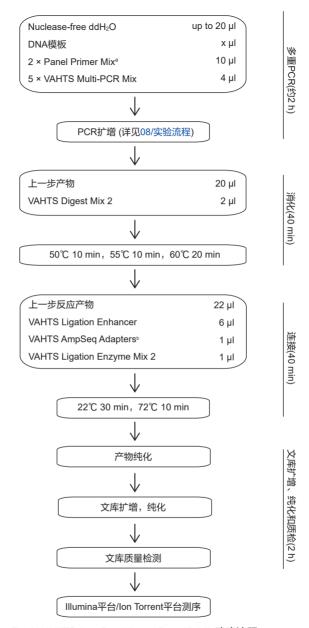


Fig 2. VAHTS AmpSeq Library Prep Kit V2 建库流程

- a. Panel可选择使用Ion Ampliseg Panel、AmpliSeg for Illumina系列Panel及相应定制Panel。
- b. 应用于Illumina平台请使用VAHTS AmpSeq Adapters for Illumina (Vazyme #NA111系列),应用于Ion Torrent 平台请使用VAHTS AmpSeq Adapters for Ion Torrent (Vazyme #NA121系列)。

08/实验流程

请在实验前仔细阅读本操作说明。

本试剂盒适用于以1 - 100 ng DNA为模板,利用Ion Ampliseq Panel引物Panel对感兴趣的区域靶向高效建库。推荐使用Equalbit dsDNA HS Assay Kit (Vazyme #EQ111)定量模板DNA 浓度,不推荐使用分光光度法测定。为了覆盖基因组比较大的区域,Panel可能包含多管引物Mix,使用时每管引物Mix均需至少1 ng的DNA模板。普通基因组对应的Panel可能不适合用来扩增FFPE或cfDNA来源的DNA样本。推荐使用高质量试剂盒提取DNA作为模板。

08-1/多重PCR

此步骤目的是以DNA为模板,以目标区域引物Panel为引物进行多重PCR,得到目标区域的扩增子。以下步骤以2 × Panel Primer Mix作为范例。

- ▼ 为避免污染,请在超净台中操作,并请勿与后续步骤在同一实验区内操作。
- 1. 将所需组分取出,置于冰上解冻,充分融化后上下颠倒混匀并短暂离心,冰上放置。 ▲5×VAHTS Multi-PCR Mix比较粘稠,需混合均匀、短暂离心后,缓慢吸取溶液。
- 2. 请于冰上配制如下反应体系:

组分	体积	
Nuclease-free ddH ₂ O	To 20 μl	
DNA模板	хμΙ	
2 × Panel Primer Mix	10 μΙ	
5 × VAHTS Multi-PCR Mix	4 μΙ	

- 3. 使用移液器轻轻吹打混匀(请勿振荡混匀),并短暂离心将反应液收集至管底。
- 4. 将PCR管置于PCR仪中,热盖设置为105℃,运行如下程序:

温度	时间	循环数
99℃	2 min	
99℃	15 sec	
60℃	4 min	Х
72℃	10 min	
4℃	Hold	

扩增循环数x可参考下表:

单管引物重数	正常来源DNA	FFPE/cfDNA	起始模板量增加循环数
10 - 50	22 - 24	25 - 27	1 ng(300 Copies) +3
50 - 200	20 - 22	23 - 25	10 ng(3,000 Copies) 0
200 - 1,000	17 - 20	20 - 23	
1,000以上	15 - 17	18 - 20	100 ng(30,000 Copies) -3

- ▲当单管引物重数高于1,000重和3,000重时,请将退火延伸时间分别延长至8 min和16 min。
- ▲当样品DNA质量较差时,可以考虑适当增加循环数。
- ▲若一个Panel中包含多管引物且引物重数不一致时,以重数高者为准,多管引物Mix的多重扩增方法如下所示。

▼ 为避免污染,请在超净台中操作,并请勿与后续步骤在同一实验区内操作。

a. 请于冰上配制如下反应体系:

▼引物浓度为10×的引物Mix:

组分	体积
Nuclease-free ddH₂O	To 18 μl
DNA模板	x μl
5 × VAHTS Multi-PCR Mix	4 μΙ 🔳

▼ 引物浓度为5 ×的引物Mix:

组分	体积	
Nuclease-free ddH₂O	To 16 µl	
DNA模板	x µl	
5 × VAHTS Multi-PCR Mix	4 µl	

▼引物浓度为2×的引物Mix:

组分	体积
Nuclease-free ddH ₂ O	To 10 μl
DNA模板	x μl
5 × VAHTS Multi-PCR Mix	4 µl 🔳

- b. 使用移液器轻轻吹打混匀(请勿振荡混匀),并短暂离心将反应液收集至管底。
- c. 将上述步骤b反应液平均分到2个PCR反应管中,并加入对应量的引物Mix。对于引物浓度为 10 ×的引物Mix,各管中需加入1 μl;对于引物浓度为5 ×的引物Mix,各管中需加入2 μl;对于引物浓度为2 ×的引物Mix,各管中需加入5 μl。
- d. 将PCR管置于PCR仪中进行多重PCR反应,反应程序及扩增程序可参考前述单管引物Mix程序。 ▲使用时每一管引物Mix(即对应的每个10 μl反应体系)均需至少1 ng的DNA模板。

08-2/消化部分引物序列

1. 将VAHTS Digest Mix 2轻弹混匀,短暂离心,置于冰上,并于冰上配制如下反应体系。

组分	体积
08-1/多重PCR反应产物	20 μΙ
VAHTS Digest Mix 2	2 µl

▲加样后请将移液器调至约反应体系总体积70%(约15 μl),轻轻吹打约五次混匀,避免产生气泡。请勿进行振荡、离心操作。

2. 将PCR管置于PCR仪中, 热盖设置为85℃或105℃, 运行如下程序:

温度	时间
50℃	10 min
55℃	10 min
60℃	20 min
10℃	Hold

[▲]引物对数大于1,000对时,以上消化时间可延长至50℃ 20 min; 55℃ 20 min; 60℃ 20 min。

08-3/扩增子接头连接与文库纯化

- 1. 请将此步骤所需试剂取出,置于冰上解冻,充分融化后上下颠倒混匀、短暂离心,冰上放置。
 - ▲VAHTS Ligation Enhancer解冻后如出现白色沉淀,请反复颠倒混匀重悬。若仍有沉淀,可置于55℃水浴融化。
 - ▲ 当多样本同时上机时,需使用带Barcode的接头。

请于冰上将如下各反应组分依次加入08-2/消化部分引物序列反应产物中:

组分	体积	
08-2/消化部分引物序列反应产物	22 µl	
VAHTS Ligation Enhancer ^a	6 µI	
VAHTS Ampseq Adapters ^b	1 µl	
VAHTS Ligation Enzyme Mix 2	1 µl	

- a. 加入Ligation Enhancer后将移液器调至约反应体系总体积70%(约20 µl),轻轻吹打约五次混匀。
- b. 该步骤中VAHTS Ampseq Adapters根据上机要求,使用对应类型的接头。应用于Illumina平台请购买VAHTS AmpSeq Adapters for Illumina (Vazyme #NA111系列),应用于Ion Torrent平台请购买VAHTS AmpSeq Adapters for Ion Torrent (Vazyme #NA121系列)。
- ▲依次添加所有组分后,将移液器调至约反应体系总体积70%(约21 μl),轻轻吹打约五次混匀,请勿离心,勿将Ampseq Adapters 与Ligation Enzyme Mix 2混合后加入。

2. 将PCR管置于PCR仪中,热盖设置为85℃或105℃,运行如下程序。

温度	时间
22℃	30 min
72℃	10 min
10℃	Hold

3. 文库纯化

- a. 使用前请将VAHTS DNA Clean Beads振荡混匀并平衡至室温。配制足量新鲜的80% 乙醇,每个样品约需要400 μl。
- b. 进行此纯化步骤前,请将样品用Nuclease-free ddH₂O补齐体积至60 μl。 涡旋VAHTS DNA Clean Beads使其充分混匀,加60 μl (1 ×) VAHTS DNA Clean Beads至 上述PCR反应体系中,使用移液器轻轻吹打10次以保证整个体系均匀。室温孵育8 min, 使文库结合到磁珠上。
 - ▲磁珠比较粘稠,用移液器时请确保取到足够的体积并缓慢打出。

- c. 将反应管短暂离心并置于磁力架上分离磁珠和液体。
- d. 保持PCR管在磁力架上,待溶液澄清(约5 min)后,小心弃去上清,注意不要扰动磁珠。
- e. 保持PCR管在磁力架上,加入200 μI新鲜配制的80%乙醇,注意加入乙醇时不要扰动磁珠, 孵育30 sec后小心移除上清。
- f. 重复步骤e, 共漂洗两次。
- g. 短暂离心将样品收集至PCR管底,并置于磁力架上30 sec, 用移液器吸走所有残留乙醇。
- h. 开盖空气干燥3-5 min。
 - ▲确保磁珠只是刚刚晾干,磁珠此时看起来没有光泽。若磁珠没有完全晾干,乙醇仍然残留在样品中,会降低DNA的洗脱速率,并可能干扰下游反应。若磁珠晾的太干,磁珠会开裂,建议在步骤延长孵育时间使其充分水化,否则会降低DNA的洗脱效果,最终降低产量。
- i. 磁珠晾干后,将PCR管从磁力架上取下,加入22 μl TE(或Nuclease-free ddH₂O)覆盖磁珠, 使用移液器吹打混匀磁珠。
- i. 室温孵育2 min。如果磁珠干燥开裂,适当延长孵育时间。
- k. 将PCR管短暂离心收集后置于磁力架中,分离磁珠和液体直到溶液澄清(约5 min)。▲若少量的磁珠不再吸附在磁力架上,用移液器在上清中吹打混匀未吸附的磁珠,使其重新悬浮,继续孵育直至没有磁珠残留在上清中。
- 1. 小心吸取20 ul上清转移至新的EP管中,-20℃保存。

08-4/文库扩增与纯化

使用时将此步骤所需试剂取出,置于冰上解冻,充分融化后上下颠倒混匀并短暂离心收集,冰上放置。

1. 请干冰上配制如下反应体系:

组分	体积	
纯化后的文库	20 μΙ	
VAHTS HiFi Amplification Mix	25 μΙ	
PCR Primer Mix	5 μΙ	

[▲]请根据文库类型选择相应的引物。应用于Illumina平台请使用PCR Primer Mix for Illumina,应用于Ion Torrent平台请使用PCR Primer Mix for Ion Torrent。

2. 将PCR管置于PCR仪中,热盖设置为105℃,运行如下程序:

温度	时间	循环数
95℃	3 min	
98℃	20 sec	
60℃	15 sec	5
72°C	30 sec	
72°C	10 min	
4℃	Hold	

3. 文库纯化

- a. 使用前请将VAHTS DNA Clean Beads振荡混匀并平衡至室温(若过冷,会导致磁珠结合效率降低)。配制足量新鲜的80%乙醇,每个样品约需要400 μl。
- b. 进行此纯化步骤前,用Nuclease-free ddH2O补齐体积至100 µl。
- c. 涡旋VAHTS DNA Clean Beads 使其充分混匀,加120 μl (1.2 ×) VAHTS DNA Clean Beads至上述PCR反应体系中,使用移液器轻轻吹打10次以保证整个体系均匀。室温 孵育8 min,使文库结合到磁珠上。
 - ▲磁珠比较粘稠, 用移液器时请确保取到足够的体积并缓慢打出。
- d. 将反应管短暂离心并置于磁力架上分离磁珠和液体。保持EP管在磁力架上,待溶液 澄清(约5 min)后,小心移除上清,注意不要扰动磁珠。
- e. 保持EP管在磁力架上,加入200 µl新鲜配制的80%乙醇,注意加入乙醇时不要扰动磁珠,孵育30 sec后小心移除上清。
- f. 重复步骤e, 共漂洗两次。
- g. 短暂离心将样品收集至EP管底,并置于磁力架上30 sec, 用移液器吸走所有残留乙醇。
- h. 开盖空气干燥3 5 min。
 - ▲确保磁珠只是刚刚晾干,磁珠此时看起来没有光泽。若磁珠没有完全晾干,乙醇仍然残留在样品中,乙醇会降低DNA的洗脱效率,并可能干扰下游反应。若磁珠晾得太干,磁珠会开裂,建议在步骤;延长孵育时间使其充分水化,否则会降低DNA的洗脱效果,最终降低产量。
- i. 磁珠晾干后,将EP管从磁力架上取下,加入22 μl TE(或Nuclease-free ddH₂O)覆盖磁珠,使用移液器吹打混匀磁珠。室温孵育2 min。如果磁珠干燥开裂,应适当延长孵育i. 时间。
 - 将EP管短暂离心收集后置于磁力架中,分离磁珠和液体直到溶液澄清(约5 min)。
 - ▲如果少量的磁珠不再吸附在磁力架上,用移液器在上清中吹打混匀未吸附的磁珠,使其重新悬浮,继续孵育直至没有磁珠残留在上清中。
- k. 小心吸取20 µl上清转移至新的EP管中,-20℃保存。

08-5/文库质量控制

文库浓度检测:

文库纯化产物建议使用KAPA Library Quantification Kit Ion Torrent Platforms (KAPA #KK4827) 或VAHTS Library Quantification Kit for Illumina (Vazyme #NQ101-106)进行文库定量。若使用Qubit Fluorometer测定浓度,检测结果仅代表纯化产物中DNA的浓度,不能代表有效文库浓度。

文库分布检测:

建议使用Agilent Technologies 2100 Bioanalyzer进行文库分布检测。

文库如需上机测序,建议以文库定量浓度混样上机检测。

09/常见问题与解决方案

◇ 文库产量偏低

- 1. 重新定量投入模板量,确认模板起始量是否正确。若低于下限(1 ng),需提高投入模板量。
- 2. 若模板质量较差,可依据说明书适当提高循环数或使用高质量模板。
- 3. 请确认每一步体系以及程序是否按照说明书进行,并注意每一步骤中各项操作细节。
- 4. 文库纯化磁珠干燥环节,不能时间过长导致磁珠过于干燥。过于干燥也会降低产量。
- 5. 讲行文库扩增时,需确保无磁珠残留,否则可能抑制扩增反应。
- 6. qPCR文库定量时,请确保循环时间以及循环数正确。

◇ 文库产量过高

- 1. 模板投入量是否高于100 ng, 若高于, 可减少模板投入量。
- 2. 多重扩增循环数可依据说明书适当降低。

◇ 文库均一度偏低

- 1. 较短扩增子较少:可适当提高磁珠纯化乘数(1.2 × 提高至1.5 ×)。
- 2. 较长扩增子较少:原因可能为模板受损严重或PCR环节扩增不充分。请使用高质量模板或将PCR环节中退火延伸时间延长。
- 3. AT含量高的扩增子较少:加倍退火延伸时间或将退火温度由60℃降低至58℃。
- 4. GC含量高的扩增子较少: 在PCR环节的前两个循环中,将退火温度由60℃提升至62℃。

◇ 明显的接头二聚体特征峰

- 1. 可适当降低磁珠纯化的乘数。
- 2. 适当降低接头浓度。

◇ 气溶胶污染

PCR产物极易产生气溶胶污染,进而导致实验结果不准确、可信度不高等问题。因此,我们推荐您将PCR反应体系配制区和PCR产物纯化区进行强制性的物理隔离,使用专用的移液器等设备,并定时对各实验区域进行清洁(使用0.5%次氯酸钠或10%漂白剂进行擦拭清理),以保证实验结果的可信度。

Nanjing Vazyme Biotech Co.,Ltd.

Web: www.vazyme.com Tel: +86-400-600-9335 Sales: sales@vazyme.com Support: support@vazyme.com

