

SIC209D Photo Interrupter

SIC209D is Transmission type photointerrupter combined high power GaAs IRED with Photo-IC. Being suitable for highly accurate position detecting, it is great help in developing an object detecting system of high performance and high reliability.

Features

- PCB direct mount type
- GAP:2.4mm
- With the installation positioning boss
- Low-boy type (installation height: 5.4mm)

Application

- Printers
- Facsimiles
- · Vending machines
- Amusement machines

Maximum Ratings

(Ta=25°C)

Item		Symbol	Ratings	Unit	
Input	Power dissipation	P_D	100	mW	
	Forward current	l _F	60	mA	
	Reverse voltage	V_R	5	V	
Output	Supply voltage	Vcc	17	V	
	Low level output current	I _{OL}	30	mA	
	Power dissipation	Po	200	mW	
Operating temperature* ²		Topr.	-20~+85	C	
Storage tempertature*2		Tstg.	-30~+85	C	
Soldering tempertature *3		Tsol.	260	S	

- * 1 pulse width: tw≤100µs period: T=10ms
- * 2 No icebound or dew
- * 3 For MAX. 5 seconds at the position of 1mm from the package.

SIC209D

Elector-Optical Characteristics

(Ta=25°C)

Item		Symbol	Conditions	Min	Тур	Max	Unit
Input	Forward voltage	V_{F}	I _F =20mA	-	1.2	1.4	V
	Reverse current	I _R	V _R =5V	-	-	10	μΑ
	Peak wavelength	λ_{P}	I _F =20mA	-	940	-	nm
Output	Operating supply voltage	V_{CC}	-	4.5	-	16.5	V
	Low level output voltage	V _{OL}	$V_{CC}=5V,I_F=0mA,I_{OL}=16mA$	-	0.3	0.4	V
	High level output voltage	V _{OH}	V_{CC} =5V, I_F =20mA, R_L =10k Ω	4.5	-	-	V
	Low level supply current	I _{CCL}	V_{CC} =5 V , I_F =0 mA	-	3	10	mA
	High level supply current	I _{CCH}	$V_{CC}=5V,I_{F}=20mA$	-	3	10	mA
Transm ission	L→H threshold input current *4	I _{FLH}	V_{CC} =5 V , R_L =10 $k\Omega$	1	5	12	mA
	Hysteresis *5	I _{FHL} /I _{FLH}	$V_{CC}=5V,R_{L}=10k\Omega$	0.60	0.83	0.98	-
	H→L propagation time	t _{PHL}		-	3	-	μs
	L→H propagation time	t _{PLH}	V_{CC} =5V, I_F =18mA, R_L =3.3K Ω	-	1	-	μs
	Rise time	tr	v CC-0 v ,iF- 10111A,iN[=3.3N22	-	0.6	-	μs
	Fall time	tf		-	0.02	-	μs

 $^{^{\}star}$ 4 $\,$ I_{FHL} represents forward current when output changes from high to low.

^{* 5} I_{FLH} represents forward current when output changes from low to high.

Photo Interrupter

SIC209D

Relative threshold input current Vs. Supply voltage

Relative threshold input current Vs.

Ambient temperature

Measurement of high output voltage

Measurement of propagation time

Photo Interrupter

SIC209D

Packing Specification

- 1. Fixed quantity (max 1000pcs) of the products are packed into plastic bag
- 2. Six bags of the products are put into #2 box
- 3.Two #2 boxes are put into #3 box(max 12000pcs)
- 4. Packing slip is pasted on #3 box

