LN - Lithium Niobate (LiNbO₃)

Introduction

Lithium Niobate (LiNbO₃ or LN) is widely used as frequency doublers for wavelength > $1\mu m$, optical parametric oscillators (OPOs) pumped at 1064 nm as well as quasi-phase-matched (QPM) devices. Additionally due to its large Electro-Optic (E-O) and Acousto-Optic (A-O) coefficients, LiNbO₃ crystal is the most commonly used material for Pockel cells, Q-switches and phase modulators, waveguide substrates, and surface acoustic wave (SAW) wafers, etc. CASTECH can provide LiNO₃ crystals with high quality and large size for all these applications.

CASTECH provides

- 50,000 to 100,000 pcs/month of LiNbO₃ wedges used for fiber optical isolators and circulators
- · Strict quality control
- · Technical support
- · Fast delivery
- Competitive price

Basic Properties

Table 1. Chemical and Physical Properties

Crystal Structure	Trigonal, Space group R3c, Point group 3m
Lattice Parameter	a = 5.148 Å, c = 13.863 Å
Melting Point	1253°C
Curie Temperature	1140°C
Mohs Hardness	5 Mohs
Density	4.64 g/cm ³
Elastic Stiffness Coefficients	$C_{11}^{E} = 2.33 \ (\times 10^{11} \text{ N/m}^2)$ $C_{33}^{E} = 2.77 \ (\times 10^{11} \text{ N/m}^2)$

Table 2. Optical and Nonlinear Optical Properties

Transparency Range	420-5200 nm
Optical Homogeneity	$\sim 5 \times 10^{-5}$ /cm
Refractive Indices	$n_e = 2.146$, $n_o = 2.220$ @1300 nm $n_e = 2.156$, $n_o = 2.232$ @1064 nm $n_e = 2.203$, $n_o = 2.286$ @632.8 nm
NLO Coefficients	$d_{33} = 86 \times d_{36}(KDP)$ $d_{31} = 11.6 \times d_{36}(KDP)$ $d_{22} = 5.6 \times d_{36}(KDP)$
Effective NLO Coefficients	$\begin{aligned} &d_{\text{eff}}(I) = d_{31} \sin\theta - d_{22} \cos\theta \sin 3\Phi \\ &d_{\text{eff}}(II) = d_{22} \cos^2\!\theta \cos 3\Phi \end{aligned}$
Sellmeier Equations (λ in μm)	$\begin{aligned} &n_o{}^2 = 4.9048 + 0.11768 / (\lambda^2 - 0.04750) - 0.027169 \lambda^2 \\ &n_e{}^2 = 4.5820 + 0.099169 / (\lambda^2 - 0.04443) - 0.02195 \lambda^2 \end{aligned}$
Damage Threshold	100 MW/cm ² (10 ns, 1064 nm)

Thermal Conductivity	38 W/m/K @25 °C
Thermal Expansion Coefficients (at 25°C)	$//a$, 2.0×10^{-6} /K $//c$, 2.2×10^{-6} /K
Resistivity	2×10-6 Ω·cm @200 °C
Dielectric Constants	$\varepsilon^{S}_{11}/\varepsilon_{0} = 43, \ \varepsilon^{T}_{11}/\varepsilon_{0} = 78$ $\varepsilon^{S}_{33}/\varepsilon_{0} = 28, \ \varepsilon^{T}_{33}/\varepsilon_{0} = 32$
Piezoelectric Strain Constant	$D_{22} = 2.04 \times 10^{-11} \text{ C/N}$ $D_{33} = 19.22 \times 10^{-11} \text{ C/N}$
Electro-Optic Coefficients	γ^{T}_{33} = 32 pm/V, γ^{S}_{33} = 31 pm/V, γ^{T}_{31} = 10 pm/V, γ^{S}_{31} = 8.6 pm/V, γ^{T}_{22} = 6.8 pm/V, γ^{S}_{22} = 3.4 pm/V
Half-Wave Voltage, DC	
Electrical field // z, light \perp z;	3.03 KV
Electrical field // x or y, light // z;	4.02 KV

Table 4. Specifications

Dimension Tolerance	$(W \pm 0.1 \text{ mm}) \times (H \pm 0.1 \text{mm}) \times (L \pm 0.2 \text{mm})$
Clear Aperture	Central 90% of the diameter
Surface Quality (Scratch/Dig)	20/10 to MIL-PRF-13830B
Flatness	λ/8 @633 nm
Transmitted Wavefront Distortion	≦λ/4 @633 nm
Parallelism	20 arc sec
Perpendicularity	≦15 arc min
Angle Tolerance	≦±0.5°
Quality Warranty Period	One year under proper use

AR-coatings

CASTECH provides the following AR-coatings:

- Dual Band AR-coating (DBAR) at 1064/532 nm on both surface, with low reflectance (R<0.2% @1064 nm and R<0.5% @532 nm)
- AR-coating and gold/chrome plated on side faces for E-O applications
- · Other coatings are available upon request