

2.66 inch E-paper Display Series GDEY0266T90H

Dalian Good Display Co., Ltd.

Product Specifications

Customer	Standard
Description	2.66" E-PAPER DISPLAY
Model Name	GDEY0266T90H
Date	2023/09/11
Revision	1.0

Design Engineering				
Approval Check Design				
宝刘印玉	燕修印凤	之吴印良		

No.18, Zhonghua West ST, Ganjingzi DST, Dalian, CHINA

Tel: +86-411-84619565

Email: info@good-display.com Website: www.good-display.com

CONTENTS

1. Over View	4
2. Features	4
3. Mechanical Specifications	4
4. Mechanical Drawing of EPD module	5
5. Input /Output Pin Assignment	6
6. Electrical Characteristics	
6.1 Absolute Maximum Rating	
6.2 Panel DC Characteristics	
6.3 Panel AC Characteristics	
6.3.1 MCU Interface Selection	9
6.3.2 MCU Serial Interface(4-wire SPI)	9
6.3.3 MCU Serial Interface(3-wire SPI)	11
6.3.4 Interface Timing	
7. Command Table	
8. Optical Specifications	
9. Typical Application Circuit	
10. Reliability test	26
11. Matched demo kit	27
12. Typical Operating Sequence	28
12.1 Normal Operation Flow	28
13. Inspection method and condition	29
13.1 Inspection condition	29
13.2 Display area	29
13.3 General inspection standards for product	30
14. Packaging	33
15. Handling, Safety and Environment Requirements	34
16. Precautions	35

1. Over View

GDEY0266T90H is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black full display capabilities. The 2.66 inch active area contains 184×360 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2. Features

- 184×360 pixels display
- High contrast High reflectance
- Ultra wide viewing angle Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Waveform can stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I²C signal master interface to read external temperature sensor
- Support partial update mode
- Built-in temperature sensor

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.66	Inch	
Display Resolution	184(H)×360(V)	Pixel	Dpi:152
Active Area	30.69×60.05	mm	
Pixel Pitch	0.1668×0.1668	mm	
Pixel Configuration	Rectangle		
Outline Dimension	37.11(H)×72.59(V) ×1.0(D)	mm	
Weight	5.05 ± 0.5	g	

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	О	This pin is I ² C Interface to digital temperature sensor Clock pin. External pull up resistor is required when connecting to I ² C slave. When not in use: VSS	
7	TSDA	I/O	This pin is I ² C Interface to digital temperature sensor Data pin. External pull up resistor is required when connecting to I ² C slave. When not in use: VSS	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I/O	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	

23	VGL		Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	C	VCOM driving voltage	

I = Input Pin, O =Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C =Capacitor Pin

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when –Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. Electrical Characteristics

6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +6.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to +70	° C
Optimal Storage Temp	TSTGo	23±2	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C

Parameter	Symbol	Conditions	Applica ble pin	Min.	Тур.	Max	Units
Single ground	Vss	-		-	0	-	V
Logic supply voltage	V_{CI}	-	VCI	2.2	3.0	3.7	V
Core logic voltage	$V_{ m DD}$		VDD	1.7	1.8	1.9	V
High level input voltage	V _{IH}	-	-	0.8 V _{CI}	-	-	V
Low level input voltage	VIL	-	-	-	-	0.2 V _{CI}	V
High level output voltage	Voh	IOH = -100uA	-	0.9 VCI	_	-	V
Low level output voltage	Vol	IOL = 100uA	-	-	-	0.1 Vci	V
Typical power	P _{TYP}	$V_{CI} = 3.0V$	-	-	9	-	mW
Deep sleep mode	P _{STPY}	$V_{CI} = 3.0V$	-	-	0.006	_	mW
Typical operating current	Iopr_V _{CI}	$V_{CI} = 3.0V$	-	_	3	-	mA
Full update time	-	25 °C	-	- /	3	-	sec
Fast update time	-	25 °C	-	_	1.5	-	sec
Partial update time	-	25 °C	-	_	0.3	-	sec
Sleep mode current	Islp_V _{CI}	DC/DC off No clock No input load Ram data retain	-	-	20	-	uA
Deep sleep mode current	Idslp_V _{CI}	DC/DC off No clock No input load Ram data not retain	-	-	2	-	uA

Notes: 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.

- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Good Display.

6.3 AC Characteristics

6.3.1 MCU Interface Selection

The pin assignment at different interface mode is summarized in Table 6-4-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name	Data/Comma	nd Interface	Control Signal		
Bus interface	SDA	SCL	CS#	D/C#	RES#
BS1=L 4-wire SPI	SDA	SCL	CS#	D/C#	RES#
BS1=H 3-wire SPI	SDA	SCL	CS#	L	RES#

6.3.2 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

Function	CS#	D/C#	SCL
Write command	L	L	↑
Write data	L	Н	1

Note: ↑ stands for rising edge of signal

In the write mode SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte . The data byte in the shift register is written to the Graphic Display Data RAM /Data Byte register or command Byte register according to D/C# pin.

Figure 6-1: Write procedure in 4-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

Figure 6-2: Read procedure in 4-wire SPI mode

6.3.3 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

Function	CS#	D/C#	SCL
Write command	L	Tie	†
Write data	L	Tie	1

Note: ↑ stands for rising edge of signal

Parameter

Figure 6-3: Write procedure in 3-wire SPI mode

In the Read mode:

1. After driving CS# to low, MCU need to define the register to be read.

Register

- 2. D/C=0 is shifted thru SDA with one rising edge of SCL
- 3. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

6.3.4 Interface Timing

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Changed Diagram

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fscL	SCL frequency (Write Mode)		8.78	20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	TBD	-		ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	TBD	628	323	ns
tcsnigh	Time CS# has to remain high between two transfers	TBD	-	-	ns
tsclhigh	Part of the clock period where SCL has to remain high	TBD	474		ns
tscllow	Part of the clock period where SCL has to remain low	TBD	17.0		ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	TBD	-		ns
tsihld	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	TBD	828	32-3	ns

Read mode

Symbol	Parameter .	Min	Тур	Max	Unit
fscL	SCL frequency (Read Mode)	-	- 1	2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	TBD	-	12	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	TBD	-	0-0	ns
tcsnigh	Time CS# has to remain high between two transfers	TBD	. E	350	ns
tsclhigh	Part of the clock period where SCL has to remain high	TBD	- 1	(17)	ns
tscllow	Part of the clock period where SCL has to remain low	TBD	20	-	ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	TBD	TBD	1520	ns
tsohld	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	TBD	TBD	-	ns

7. Command Table

1		0 A ₆ 0	0 A ₅ 0	0 A ₄ 0	0 A ₃ 0	0 A ₂ 0 B ₂	0 A ₁ 0	1 A ₀	Driver Output control	Gate setti	ng		60E
,	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Driver Output control				
	0	0	0	0	0	0	0			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
			200	-				Λ.], 384 MU	
	0	0	0	0	0	B ₂	-	A ₈]	MUX Gate	e lines set	iting as (A	[8:0] + 1).
							B1	Bo		B [2:0] = 000 [POR]. Gate scanning sequence and direction B[2]: GD Selects the 1st output Gate GD=0 [POR], G0 is the 1st gate output channel, gate output sequence is G0, G1, G2, G3, GD=1, G1 is the 1st gate output channel, gate output sequence is G1, G0, G3, G2, B[1]: SM Change scanning order of gate driver SM=0 [POR], G0, G1, G2, G3G382, G383 (left arright gate interlaced) SM=1, G0, G2, G4G382, G1, G3,G38 B[0]: TB TB = 0 [POR], scan from G0 to G383 TB = 1, scan from G383 to G0.		nnel, gate 32, G3, nnel, gate 33, G2, ate driver. 33 (left and	
15													
3	0	0	0	0	0	0	1	1	Gate Driving voltage	Set Gate			
	0	0	0	A ₄	A ₃	A ₂	A ₁	A ₀	Control	A[4:0] = 0	0h [POR]	-11.	
				- 500	4.5		331					0V to 20V	
										A[4:0]	VGH	A[4:0]	VGH
										00h	20	0Dh	15
										03h	10	0Eh	15.5
										04h 05h	10.5	0Fh	16
											11 5	10h	16.5
										06h	11.5	11h	17
										07h	12	12h	17.5
- 1										08h	12.5	13h	18
										07h	12	14h	18.5
													19
													19.5
										A 200 A			20
												Other	NA
											08h 09h 0Ah 0Bh 0Ch	09h 13 0Ah 13.5 0Bh 14	09h 13 16h 0Ah 13.5 17h 0Bh 14 Other

Com	man	d Tal	ole											Name of the state
-	D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Comm	and		Description
0	0	04	0	0	0	0	0	1	0	0	Source	Driving	voltage	Set Source driving voltage
0	1		A 7	A ₆	A 5	A ₄	Аз	A2	A ₁	Ao	Contro		romago	A[7:0] = 41h [POR], VSH1 at 15V
1000	1		1000000	9 9		0.00				100/00/00/00				B [7:0] = A8h [POR], VSH2 at 5V.
0	- 3		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	-			C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co				Remark: VSH1>=VSH2
		ltage	setti	ng fr	om 2	.4V to	o	VS	7]/B[7 3H1/V 17V			e setting	from 8.8	C[7] = 0, V VSL setting from -5V to -17V
	B[7:0]	VSH	1/VSH2	A/E	3[7:0]	VSH1	/VSH2		VB[7:0]	VS	H1/VSH2	A/B[7:0]	VSH1/VSH	[2] C[7:0] VSL
	8Eh	2	2.4	А	Eh	5	.6		21h		8.8	37h	13	0Ah -5
_	8Fh	-	2.5		\Fh		.7		23h		9	38h	13.2	0Ch -5.5
-	90h	+	2.6	-	30h	_	.8		24h	-	9.2	39h	13.4	0Eh -6
-	91h 92h	-	2.7	_	31h 32h		.9	-	25h 26h		9.4	3Ah 3Bh	13.6	10h -6.5
-	93h	-	2.9	-	33h	_	.1		27h		9.8	3Ch	14	12h -7
	94h	_	3	-	34h		.2		28h	(a) (c)	10	3Dh	14.2	14h -7.5 16h -8
	95h	1	3.1	Е	35h	6	.3		29h		10.2	3Eh	14.4	16h -8 18h -8.5
	96h		3.2	В	36h	6	.4		2Ah		10.4	3Fh	14.6	1Ah -9
-	97h	-	3.3		37h	_	.5		2Bh		10.6	40h	14.8	1Ch -9.5
-	98h	_	3.4	_	38h		.6	-	2Ch	_	10.8	41h	15	1Eh -10
-	99h 9Ah	-	3.5		39h 3Ah		.7	-	2Dh 2Eh	-	11.2	42h 43h	15.2 15.4	20h -10.5
_	9Bh	_	3.7		Bh		.0	\vdash	2Fh	+	11.4	43h	15.4	22h -11
-	9Ch	+	3.8	-	Ch		7		30h	+	11.6	45h	15.8	24h -11.5
-	9Dh	+	3.9		Dh	_	.1		31h		11.8	46h	16	26h -12
	9Eh		4	В	Eh	7	.2		32h	8 8	12	47h	16.2	28h -12.5
	9Fh	_	1.1		BFh	24 /47	.3		33h		12.2	48h	16.4	2Ah -13
-	A0h	_	1.2		00h		.4		34h		12.4	49h	16.6	2Ch -13.5
_	A1h	+	1.3	-	1h	_	.5		35h		12.6	4Ah	16.8	2Eh -14
$\overline{}$	A2h A3h	_	4.4	_	22h 23h	_	.6 .7	_	36h	92.2	12.8	4Bh Other	NA	30h -14.5
_	A4h	+	4.6		24h		.8				l	Other	IVA	32h -15 34h -15.5
_	A5h	_	1.7	_	25h		.9							36h -16
	A6h	1 2	4.8	C	26h	1	В							38h -16.5
13	A7h	4	1.9	C	7h	8	.1							3Ah -17
- 4	A8h		5	C	28h	8	.2							Other NA
_	A9h	_	5.1		9h		.3							
-	AAh	+	5.2	_	Ah Bh	_	.4							
-	ABh ACh	_	5.4		Ch Ch	_	.6							
-	ADh	+	5.5		ther		IA							
0	0	08	0	0	0	0	1	0	0	0		Code Set	ting	Program Initial Code Setting
											JII I	rogram		The command required CLKEN=1.
														Refer to Register 0x22 for detail.
														BUSY pad will output high during
														operation.
0	0	09	0	0	0	0	1	0	0	1			for Initial	Write Register for Initial Code Setting
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		Setting		Selection
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	1			A[7:0] ~ D[7:0]: Reserved
							-				-			Details refer to Application Notes of Initi
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	1		Code Setting	Code Setting
0	1		D ₇	D_6	D ₅	D ₄	D ₃	D ₂	D ₁	Do	1			200 200 200 200

	man		D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	0A	0	0	0	0	1	0	1	0	A CONTRACTOR OF THE PROPERTY O	Read Register for Initial Code Setting
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable with Phase 1, Phase 2 and Phase
0	1	00	1	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao		for soft start current and duration setting.
0	1		1	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	- 000		A[7:0] -> Soft start setting for Phase1
57.00			- 200	-		2000	-	-	-	-	-	= 8Bh [POR]
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	15	-	B[7:0] -> Soft start setting for Phase2 = 9Ch [POR]
0	1		0	0	D ₅	D4	D ₃	D ₂	D ₁	Do		C[7:0] -> Soft start setting for Phase3 = 96h [POR] D[7:0] -> Duration setting = 0Fh [POR] Bit Description of each byte: A[6:0] / B[6:0] / C[6:0]:
												Bit[6:4] Driving Strength
												Selection 000 1(Weakest)
												000 1(Weakest)
												010 3
												011 4
												100 5
												101 6
												110 7
												111 8(Strongest)
												Bit[3:0] Min Off Time Setting of GDR [Time unit] 0000 NA
												0011
												0100 2.6
												0101 3.2
												0110 3.9
												0111 4.6 1000 5.4
												1001 6.3
									1			1010 7.3
											, and the second	1011 8.4
												1100 9.8
												1101 11.5
												1110 13.8
												1111 16.5
												D[5:0]: duration setting of phase D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2 D[1:0]: duration setting of phase 1 Bit[1:0]
						_			-	-	1	
0	0	10	0	0	0	1	0	0	0	0 [Deep Sleep mode	Deep Sleep mode Control:
0	1		0	0	0	0	0	0	A ₁	Ao		A[1:0]: Description
												00 Normal Mode [POR]
												01 Enter Deep Sleep Mode 1
												11 Enter Deep Sleep Mode 2
												After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark: To Exit Deep Sleep mode, User required
												To Exit Deep Sleep mode, User requi send HWRESET to the driver

0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1		0	0	0	0	0	A ₂	A ₁	A ₀		A[2:0] = 011 [PÓR]
												A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 —Y decrement, X decrement, 01 —Y decrement, X increment, 11 —Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high.
												Note: RAM data are unaffected by this command.
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1.
												Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	As	A4	0	A ₂	Aı	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.

0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1		0	0	0	0	0	A ₂	A ₁	A ₀	VOI BOICOMON	A[2:0] = 100 [POR], Detect level at 2.3V
855	3.53		39701	55.00	10.77.X	1.5	371		/4.635	30350		A[2:0] : VCI level Detect
												A[2:0] VCI level
												011 2.2V
												100 2.3V
												101 2.4V
												110 2.5V
												Other NA
												Other INA
												The command required CLKEN=1 and
												ANALOGEN=1
												Refer to Register 0x22 for detail.
												Attackling and initiated VCI datastics
												After this command initiated, VCI detection starts.
												BUSY pad will output high during
												detection.
												The detection result can be read from the
	L			_								Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1	10.5	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control	A[7:0] = 48h [POR], external temperatrure
	325		-52	1000	0.75		COMMENT.	4000000		4.5		sensor
				_								A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A 7	A ₆	A ₅	A ₄	Аз	A ₂	Aı	Ao	Control (Write to	A[7:0] = 7Fh [POR]
					1200					3/27/0	temperature register)	
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor Control (Read from	Read from temperature register.
1	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	Ao	temperature register)	
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control (Write Command	
0	1		B ₇	B ₆	Bs	B ₄	Вз	B ₂	Bı	Bo	to External temperature sensor)	A[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	serisor)	B[7:0] = 00h [POR], C[7:0] = 00h [POR],
				1852	8	8		1001		25		
												A[7:6]
												A[7:6] Select no of byte to be sent 00 Address + pointer
												01 Address + pointer + 1st parameter
												10 Address + pointer + 1st parameter +
												2nd pointer 11 Address
												A[5:0] - Pointer Setting
												B[7:0] - 1st parameter
												C[7:0] – 2 nd parameter
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												Tiefer to Register 0x22 for detail.
												After this command initiated, Write
												Command to external temperature sensor
												starts. BUSY pad will output high during
												operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence
												The Display Lindate Sequence Option is
												The Display Update Sequence Option is located at R22h.
												BUSY pad will output high during
												operation. User should not interrupt this
												operation to avoid corruption of panel
												images.

0	0	21	O A7	0	1	0	O A3	O A2	O A1	1 Ao	Display Update Control 1	RAM content option for Display II A[7:0] = 00h [POR] B[7:0] = 00h [POR] A[7:4] Red RAM option 0000 Normal 0100 Bypass RAM cont 1000 Inverse RAM cont A[3:0] BW RAM option 0000 Normal 0100 Bypass RAM cont	ent as 0 ent
			ADDRESS OF THE PARTY OF THE PAR	A ₆	01.26670	DAMAIS	VIII (7)	5005	ATOM S	C-000-00		1000 Inverse RAM cont	ent
0	1		B ₇	Be	0	0	0	0	0	0		B[7:6] Resolution select 00 Display resolution is 20 01 Display resolution is 10 10 Display resolution is 10 11 Display resolution is 20	84x384 68x384
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Option	
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control 2	Enable the stage for Master Act A[7:0]= FFh (POR) Operating sequence	Parameter (in Hex)
												Enable clock signal Disable clock signal	80 01
												Enable clock signal	
												→ Enable Analog Disable Analog	C0
												→ Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal Enable clock signal	91
												→ Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	В9
		7										Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF

0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entries will be written into the BW RAM until another command is written. Address pointers will advance accordingly For Write pixel: Content of Write RAM(BW) = 1 For Black pixel: Content of Write RAM(BW) = 0
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during operation.
												орогалот.
0	1	29	0	0	0	0	1 A ₃	0 A ₂	0 A ₁	1 A ₀	VCOM Sense Duration	Stabling time between entering VCOM sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
											The state of the s	1
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.

	man D/C#	_	_	D6	D5	D4	D3	D2	D1	DO	Command	Descript	tion		
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	-		er from M	ICU interfac
0	1	20	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	White VOOIVI register		00h [POR]		ioo interiac
U	3.		7 /	По	Ao	7 4	73	/\Z	Α1	Λ0					
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
^					I			1							
)	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	egister for	Display (Option:
1	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	A ₀	Display Option			A STORY OF	
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	Bı	Bo			VCOM OT		on
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		(Comm	and 0x37,	Byte A)	
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0].	VCOM Re	nister	
977	311		2000	100000	1101000		NAPARA.		1100000				and 0x2C)		
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		(00	u 5,125,		
1	1	a	F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo			G[7:0]: Dis		
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀			and 0x37,	Byte B to	Byte F)
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	Ho		[5 bytes	5]		
1	1		17	16	I 5	14	l ₃	12	l ₁	lo		LICZ.OL	V[7,0], \Wa	voform \	lavaian
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo			K[7:0]: Wa and 0x37,		
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K ₀		[4 bytes		byte G to	b byte J)
1	1		IX/	1/6	11.5	114	113	112	INI	No		[T D J to C	1		
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 30	Ryta I Isa	ID store	ed in OTP:
-	1	2L	-		2222	200					Oser ID Head				8, Byte A ar
1			A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀) [30 bytes		-, -, i.s / i.s.
1	1		B ₇	B ₆	B 5	B ₄	Вз	B ₂	Bı	B ₀					
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀					
	- 88			-						-3					
1	1			•	-		-								
				•	-		-<								
1	1		Z ₇	Z ₆	Z ₅	Z ₄	Z ₃	Z ₂	Z ₁	Z ₀					
1	1		AA ₇	AA ₆	AA ₅	AA ₄	ААз	AA ₂	AA ₁	AA ₀					
1	1		AB ₇	AB ₆	AB ₅	AB ₄	AB ₃	AB ₂	AB ₁	AB ₀					
1	1			AC ₆					_	_	d .				
1	1			AD ₆					_						
lo.			, , ,) /	, 106	, ,,,,	, 104	, 103	, 102	, ,,,,	, ,00					
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC	status Bit	POR 0x0)1]
1	1		0	0	A ₅	A ₄	0	0	Aı	A ₀		A[5]: HV	Ready De	tection fla	ag [POR=0]
1	1		<u></u>	- 11								0: Ready			J
												1: Not Re	eady		
												A[4]: VCI	Detection	flag [PO	R=0]
												0: Norma			
													wer than th	ne Detect	level
												A[3]: [PC			
													y flag [PO	H=0]	
												0: Norma			
												1: BUSY			
												A[1:0]: C	hip ID [PO	R=01]	
												Dem - :			
	- 1										İ	Remark:			
														are not	valid ofter
												A[5] and	A[4] status		
												A[5] and RESET,		to be initi	iated by

0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
		2	2 1						37			
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface [227 bytes], which contains the content of
0	1	i A	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FF
0	1		D7 :	D6 :	D5 :	: :	:	:	: :	D0 :		and XON[nXY]
0	1	-	•			•	•	•	•	•		Refer to Session 6.7 WAVEFORM SETTING
U	la la		18*	••			100.8	•				
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1685 application note.
		25.	s. 2									BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1		A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈		A[15:0] is the CRC read out value
1	1		A ₇	A 6	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1		A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		0: Default [POR]
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		1: Spare
0	1	0	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		C[7:0] Display Mode for WS[15:8] D[7:0] Display Mode for WS[23:16]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	F ₀		0: Display Mode 1
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G₀		1: Display Mode 2
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	Ho		F[6]: Ping-Pong for Display Mode 2
0	1		l ₇	l ₆	J ₅	₄	l ₃	l ₂	l₁ J₁	I ₀		0: RAM Ping-Pong disable [POR]
U			J ₇	J ₆	J 5	J4	J ₃	J ₂	J1	J 0		1: RAM Ping-Pong enable G[7:0]~J[7:0] module ID /waveform version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1

0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register f	or User ID
0	1		A ₇	A ₆	A 5	A ₄	A ₃	A ₂	A ₁	A ₀)]: UserID [30 bytes]
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		Remarks: A[7:0]~AD[7:0] can be stored in
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		OTP	1 Main and a stored in
0	1			÷			•	•	15	138			
١	1								19				
0	1		Z ₇	Z ₆	Z 5	Z ₄	Z ₃	Z ₂	Z ₁	Zo			
0	1		AA ₇	AA ₆	AA ₅	AA ₄	AA ₃	AA ₂	AA ₁	AA ₀			
0	1		AB ₇	AB ₆	AB ₅	AB ₄	AB ₃	AB ₂	AB ₁	AB ₀			
0	1					AC ₄				_			
0	1		AD ₇	AD ₆	AD ₅	AD ₄	AD ₃	AD ₂	AD ₁	AD ₀			
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program n	anda
0	1	39	0	0	0	0	0	0	A ₁	A ₀	OTP program mode	A[1:0] = 00: No	rmal Mode [POR]
١	1		0	U		U	U	U	Ai	Au		A[1:0] = 11: Inte	ernal generated OTP
												programming ve	oltage
												Remark: User is	s required to EXACTLY
												follow the refere	ence code sequences
						y				V			
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control		
0	1		A ₇	A ₆	A ₅	A ₄	0	0	A ₁	A ₀		A[7:0] = C0h [F A [7:6] :Select	POR], set VBD as HIZ.
												A[7:6] .Select	Select VBD as
												00	GS Transition,
													Defined in A[2] and A[1:0]
												01	Fix Level,
													Defined in A[5:4]
												10	VCOM
												11[POR]	HiZ
												A [5:4] Fix Lev	el Setting for VBD
												A[5:4]	VBD level
												00	VSS
												01	VSH1
												10	VSL
												11	VSH2
												A [1:0] GS Tra	nsition setting for VBD
												VBD Level Sel	ection:
												00b: VCOM; 0	
												10b: VSL; 11b	
												A[1:0]	VBD Transition LUT0
												00	LUT1
												10	LUT2
												11	LUT3
									60		<u> </u>		
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LUT	
0	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	A ₀		Set this byte to	22h
0	0	11	0	4		0			_	4	Dood DAM Ontion	Dood DAM O	tion
0	0	41	0	0	0	0	0	0	0	1 A ₀	Read RAM Option	Read RAM Op A[0]= 0 [POR]	uon
U	1		U	U	0	0	U	0	0	H ₀			corresponding to RAM0x2
													corresponding to RAM0x2
							<u></u>						
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address		art/end positions of the
0	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	A ₀	Start / End position	window address address unit fo	ss in the Y direction by an
0	1		0	0	0	0	0	0	0	A ₈		address unit it	VI I LEVINI
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		A[8:0]: YSA[8:	0], YStart, POR = 000h
0	1		0	0	0	0	0	0	0	B ₈		B[8:0]: YEA[8:	0], YEnd, POR = 17Fh

0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address Start / End position	Specify the window address u	ddress in t	he X direc	s of the ction by an
												A[5:0]: XS B[5:0]: XE			
					2740										
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀					
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM for Regular Pattern	Auto Write A[7:0] = 00		M for Reg	ular Pattern
												A[7]: The A[6:4]: Ste Step of alt to Gate	p Height,	POR= 00	R = 0 0 on according
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32 64	110 111	384 NA
												A[2:0]: Ste	ep Width fo	or 168x38	4, POR= 000
												to Source	er RAM In	X-direction	on according
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	168
												010	32 64	110	NA NA
												011	64	111	I NA
0	1		A ₇	A ₆	A 5	A ₄	0	A ₂	A ₁	A ₀		Step of alt	ep Width for er RAM in	or 184x38 X-direction	4, POR= 000 on according
												to Source A[2:0]	Width	A[2:0]	Width
												000	8 16	100	128 184
												010	32	110	NA
															4, POR= 000 on according
												to Source		1111111111111	
												A[2:0] 000	Width 8	A[2:0]	Width 128
												001	16	101	200
												010 011	32 64	110 111	NA NA
															4, POR= 000 on according
												A[2:0]	Width	A[2:0]	Width
												000	8 16	100	128 216
												010	32	110	NA
												011	64	111	NA
												BUSY pac operation.		ut high du	ring

0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for	Auto Write	B/W RAI	M for Reg	ular Pattern
0	1		A ₇	A ₆	A 5	A ₄	0	A ₂	A ₁	A ₀	Regular Pattern	A[7:0] = 0			
				111				inic				A[7]: The A[6:4]: Ste Step of all to Gate	ep Height,	POR= 00	
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	384
												011	64	111	NA
													ter RAM ir		4, POR= 000 on according
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	168
												010	32	110	NA
												011	64	111	NA
												Step of all to Source	ter RAM ir	n X-direction	4, POR= 000 on according
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	184
												010	32	110	NA
												011	64	111	NA
													ter RAM ir		4, POR= 000 on according
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	200
												010	32	110	NA
												011	64	111	NA
												Step of all to Source	ter RAM ir	X-direction	4, POR= 000 on according
												A[2:0]	8	A[2:0]	128
												000	16	100	216
												010	32		NA NA
												010	64	110	NA NA
															will output
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initi	al settings	for the R	AM X address
0	1	+E	0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	counter	in the add A[5:0]: 00	lress coun		nivi A audies
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initi	al settings	for the R	AM Y address
0	1	255	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	counter	in the add			addiood
0	1		0	0	0	0	0	0	0	A ₈	The second and the Second	A[8:0]: 00	0h [POR].	Vallation I.	
0	0	7F	0	1	1	1	1	1	1	1	NOP	does not I module. However,	it can be	effect on to used to te	ommand; it he display rminate d Commands.

8. Optical Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	ı	%	8-1
CR	Contrast Ratio	Indoor	8:1		ı		8-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 25 °C		3	ı	sec	
Life		Topr		1000000times or 5years			

Notes: 8-1. Luminance meter: Eye-One Pro Spectrophotometer.

- 8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.
- 8-3. WS: White state, DS: Dark state

9. Typical Application Circuit

10.Reliability test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=60° C, RH=35%, 240h Test in white pattern
3	High-Temperature Operation	T=50°C, RH=35%, 240h
4	Low-Temperature Operation	T=0° C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50°C, RH=90%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25° C 30min]→[+60° C 30 min]: 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

11. Matched Development Kit

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh black-white E-paper Display, three-color (black, white and red/Yellow) E-paper Display and four-color(black, white, red and yellow) Good Display 's E-paper Display. And it is also added the functions of USB serial port, FLASH chip, font chip, current detection ect.

Development Kit consists of the development board and the pinboard.

Supported development platforms include STM32, ESP32, ESP8266, Arduino UNO, etc. More details, please click to the following links:

STM32 https://www.good-display.com/product/219.html

ESP32 https://www.good-display.com/product/338.html

ESP8266 https://www.good-display.com/product/220.html

Arduino UNO https://www.good-display.com/product/222.html

12. Typical Operating Sequence

12.1 Normal Operation Flow

6. Power off

Deep sleep by Command 0x10, data 0x03

13. Inspection method and condition

13. 1 Inspection condition

Item	Condition
Illuminance	800~1500 lux
Temperature	22°C ±3°C
Humidity	55±10 %RH
Distance	≥30cm
Angle	Vertical fore and aft 45
Inspection method	By eyes

13. 2 Zone definition

A Zone: Active area

B Zone: Border zone

C Zone: From B zone edge to panel edge

13. 3 General inspection standards for products

13.3.1 Appearance inspection standard

Inspec	tion item	Figure		A zone inspection standard	B/C zone	Inspection method	MAJ/ MIN
Spot defects	Spot defects such as dot, foreign matter, air bubble, and dent etc.	Diameter D=(L+W)/2 (L-length, W-width) Measuring method shown in the figure below D=(L+W)/2	The distance between the two spots should not be less than 10mm	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Foreign matter D≤1mm Pass	Check by eyes Film gauge	MIN
Insp	Inspection item Figure		Figure	A zone inspection standard		/C Inspection method	MA J/ MI

Insp	ection item	Figure		A zone inspection standard	B/C zone	Inspection method	MA J/ MI N
Line defects	Line defects such as scratch, hair etc.	L-Length, W-Width, (W/L)<1/4 Judged by line, (W/L)≥1/4 Judged by dot	The distance between the two lines should not be less than 5mm	7.5"-13.3"Module (Not include 7.5"): L>10mm,N=0 W>0.8mm, N=0 5mm≤L≤10mm, 0.5mm≤W≤0.8mm N≤2 L≤5mm, W≤0.5mm Ignore 4.2"-7.5"Module (Not include 4.2"): L>8mm,N=0 W>0.2mm, N=0 2mm≤L≤8mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore Module below 4.2": L>5mm,N=0 W>0.2mm, N=0 2mm≤L≤5mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore	Ignore	Check by eyes Film gauge	MIN

Inspect	ion item	Figure	Inspection standard	Inspection method	MA J/ MIN
Panel chipping and crack defects	TFT panel chipping	X the length, Y the width, Z the chipping height, T the thickness of the panel	Chipping at the edge: Module over 7.5" (Include 7.5"): $X \le 6 \text{mm}, Y \le 1 \text{mm}$ $Z \le T$ $N = 3$ Allowed Module below 7.5" (Not include 7.5"): $X \le 3 \text{mm}, Y \le 1 \text{mm}$ $Z \le T$ $N = 3$ Allowed Chipping on the corner: IC sideX $\le 2 \text{mm}$ $Y \le 2 \text{mm}$, Non-IC sideX $\le 1 \text{mm}$ $Y \le 1 \text{mm}$. Allowed Note: Chipping should not damage the edge wiring. If it does not affect the display, allowed	Check by eyes. Film gauge	MIN
	Crack	玻璃裂纹	Crack at any zone of glass, Not allowed	Check by eyes \ Film gauge	MIN
	Burr edge	†	No exceed the positive and negative deviation of the outline dimensions $X+Y \le 0.2 mm$ Allowed	Calliper	MIN
	Curl of panel	H Curl height	Curl height H≤Total panel length 1% Allowed	Check by eyes	MIN

Inspec	tion item	Figure	Inspection standard	Inspecti on method	MAJ / MIN
PS defect	Water proof film		Waterproof film damage, wrinkled, open edge, not allowed Exceeding the edge of module(according to the lamination drawing) Not allowed Edge warped exceeds height of technical file, not allowed	Check by eyes	MIN
RTV defect	Adhesive effect		Adhesive height exceeds the display surface, not allowed 1 .Overflow, exceeds the panel side edge, affecting the size, not allowed 2 .No adhesive at panel edge≤1mm, mo exposure of wiring, allowed 3. No adhesive at edge and corner1*1mm, no exposure of wiring, allowed Protection adhesive, coverage width within W≤1.5mm, no break of adhesive, allowed	Check by eyes	MIN
	Adhesive re-fill		Dispensing is uniform, without obvious concave and breaking, bubbling and swell, not higher than the upper surface of the PS, and the diameter of the adhesive re-filling is not more than 8mm, allowed	Check by eyes	MIN
EC defect	Adhesive bubble	防水胶涂布区 封边胶边缘 PS边缘 Border外缘 (PPL边缘)	 Effective edge sealing area of hot melt products ≥1/2 edge sealing area; Bubble a+b≥1/2 effective width, N≤3, spacing≥5mm, allowed No exposure of wiring, allowed 	Check by eyes	MIN

Inspecti	ion item	Figure	Inspection standard	Inspection method	MAJ/ MIN
EC defect	Adhesive effect		1. Overflow, exceeds the panel side edge, affecting the size, not allowed 2.No adhesive at panel edge≤1mm, mo exposure of wiring, allowed 3.No adhesive at edge and corner 1*1mm, no exposure of wiring, allowed 4. Adhesive height exceeds the display surface, not allowed	Visual, caliper	MIN
Silver dot adhesive defect	Silver dot adhesive		1. Single silver dot dispensing amount ≥1mm, allowed 2. One of the double silver dot dispensing amount is ≥1mm and the other has adhesive (no reference to 1mm) Allowed	Visual	MIN
defect			Silver dot dispensing residue on the panel ≤0.2mm, allowed	Film gauge	MIN
	FPC wiring		FPC, TCP damage / gold finger peroxidation, adhesive residue, not allowed	Visual	MIJ
FPC defect	FPC golden finger		The height of burr edge of TCP punching surface ≥ 0.4mm, not allowed	Caliper	MIN
	FPC damage/cr		Damage and breaking, not allowed	Check by eyes	MIN
	ease		Crease does not affect the electrical performance display, allowed	Check by eyes	WIIIN

Inspection	on item	Figure	Inspection standard	Inspection method	MAJ/ MIN
Protective	Protective	Scratch and crease on the surface but no affe	ct to protection function, allowed	Check by eyes	MIN
film defect	film	Adhesive at edge L≤5mm, W≤0.5mm, N=	Check by eyes	MIN	
Stain defect	Stain	If stain can be normally wiped clean by > 99	Visual	MIN	
Pull tab defect	Pull tab	The position and direction meet the documer film can be pulled off.	Check by eyes/ Manual pulling	MIN	
Shading tape defect	Shading tape	Tilt≤10°, flat without warping, completely co	overing the IC.	Check by eyes/ Film gauge	MIN
Stiffener	Stiffener	Flat without warping, Exceeding the left and Left and right can be less than 0.5mm from F	Check by eyes	MIN	
Label	Label/ Spraying code	The content meets the requirements of the warequirements of the technical documents.	Check by eyes	MIN	

14. Packaging

PACKLING ORDER:

- 1) Putting 20 pcs Modules on each PET tray. Product with EPE pad on top.
- 2) Putting 18 pcs PET trays together with 1 empty tray on the top of PET tray. the tray together with rubber band.
- 3) Insert in the ESD bag, add desiccant in the ESD bag. Plastic sealing.

4) Inside the outer box, The box is filled with EPE pad from top to bottom, front to back.

5) Packing finished

Note: 20x (19-1)=360pcs/Outcarton

15. Handling, Safety and Environmental Requirements

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care.

Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status

Product specification | The data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134).

Stress above one or more of the limiting values may cause permanent damage to the device.

These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Droduct	Environmenta	l certification
FIUUULL	LIIVII UIIIIIEIILA	ı ceruncanon

RoHS

16. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL / EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.