

E-paper Display Series

GDEY0266T90

Dalian Good Display Co., Ltd.

Product Specifications

Customer	Standard
Description	2.66" E-PAPER DISPLAY
Model Name	GDEY0266T90
Date	2021/10/12
Revision	1.0

D	esign Engineerir	ng
Approval	Check	Design
宝刘印玉	燕修印凤	之刘印昭

Zhongnan Building, No.18, Zhonghua West ST, Ganjingzi DST, Dalian, CHINA

Tel: +86-411-84619565

Email: info@good-display.com Website: www.good-display.com

CONTENTS

1.	Overview	4
2.	Features	4
3.	Mechanical Specification	4
4.	Mechanical Drawing of EPD Module	5
5.	Input/output Pin Assignment	
6.	Command Table	8
7.	Electrical Characteristics	21
	7.1 Absolute maximum rating	
	7.2 Panel DC Characteristics	
	7.3 Panel AC Characteristics	22
	7.3.1. MCU Interface selection	22
	7.3.2 MCU Serial Interface (4-wire SPI)	22
	7.3.3 MCU Serial Interface (3-wire SPI)	24
	7.3.4 Interface Timing	25
8.	Optical Specifications	27
9.	Block Diagram	28
10.	Reference Circuit	29
11.	Matched Development Kit	30
12.	Handling, Safety and Environmental Requirements	31
13.	Packaging	32
14	Precautions	33

1. Overview

GDEY0266T90 is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black full display capabilities. The 2.66 inch active area contains 296×152 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2.Features

- 296×152 pixels display
- High contrast High reflectance
- Ultra wide viewing angle Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Waveform can stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.66	Inch	
Display Resolution	152(H)×296(V)	Pixel	Dpi:125
Active Area	30.704×60.088	mm	
Pixel Pitch	0.202×0.203	mm	
Pixel Configuration	Rectangle		
Outline Dimension	36.30(H)×71.82(V) ×1.0(D)	mm	
Weight	4.7±0.5	g	

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	О	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	C	Negative Source driving voltage	
23	VGL	C	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	C	VCOM driving voltage	

I = Input Pin, O = Output Pin, /O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when -Outputting display waveform -Communicating with digital temperature sensor.

Note 5-5: Bus interface selection pin

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. Command Table

0.556672	A STATE OF THE PARTY OF THE PAR	d Tal	ole														
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on				
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti					
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		A[8:0]= 127h [POR], 296 MUX					
0	1		0	0	0	0	0	0	0	A ₈	MUX Gate lines setting as (A[8:0] + 1).						
0	1		0	0	0	0	0	0 B ₂	0 B ₁	A ₈ B ₀		B[2:0] = 0 Gate scar B[2]: GD Selects th GD=0 [PC G0 is the output se GD=1, G1 is the output se B[1]: SM Change s SM=0 [PC G0, G1, C interlaced SM=1, G0, G2, C B[0]: TB TB = 0 [PC	oo [POR] nning sequence is 1st gate of quence is canning oo DR], 62, G32 OR], scar	but Gate butput cha G0,G1, G butput cha G1, G0, G brder of ga e95 (left ar	nnel, gate 62, G3, nnel, gate 63, G2, te driver. nd right ga		
												15 - 1, 50	can from C	G295 to G	0.		
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	Set Gate driving voltage					
0	1		0	0	0	A4	A ₃	A ₂	A ₁	Ao	Control	A[4:0] = 0	0h [POR]	01/1 001	,		
						4,000								0V to 20V			
												A[4:0] 00h	VGH 20	A[4:0] 0Dh	VGH		
												03h	10	0Eh	15 15.5		
												03h	10.5	0Fh	16.5		
												05h	11	10h	16.5		
												06h	11.5	11h	17		
												07h		- Contract Contract	17.5		
													12	12h	-200-200		
												08h	12.5	13h	18		
												07h	12	14h	18.5		
												08h	12.5	15h	19		
												09h	13	16h	19.5		
												0Ah	13.5	17h	20		
									0Bh	14	Other	NA					
				1	1	1	I	1	I		I .	0Ch	14.5				

	man		ble			r .	,							
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Comn	nand	1	Description
0	0	04	0	0	0	0	0	1	0	0		e Driving	voltage	Set Source driving voltage
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	Az	A ₁	Ao	Contro	ol		A[7:0] = 41h [POR], VSH1 at 15V
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo	1			B[7:0] = A8h [POR], VSH2 at 5V. C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	1			Remark: VSH1>=VSH2
		- 1	01	00	0.5	04	0,5		7]/B[<u> </u>			C[7] = 0,
MI/	/B[7]	- I,	oltar	20 00	tting	from	2 11/					e setting	from Q\/	
	.8V	112	voltag	JC 30	tung	IIOIII	Z.7 V		17V	OTIZ	· voilag	c setting	ii Oili O V	VOL Setting from -5V to -17V
	B[7:0]	VSH	1/VSH2	A/E	3[7:0]	VSH1	/VSH2	_	A/B[7:0	VS	H1/VSH2	A/B[7:0]	VSH1/VSH	[2] C[7:0] VSL
	8Eh	_	2.4	-	\Fh		.7		23h	1	9	3Ch	14	0Ah -5
_	8Fh 90h	_	2.5	-	30h 31h	101	i.8 i.9	-	24h 25h	+	9.2	3Dh 3Eh	14.2	0Ch -5.5
_	91h		2.7	-	32h	-	6	-	26h	+	9.6	3Fh	14.6	0Eh -6
	92h		2.8	E	53h	6	.1		27h		9.8	40h	14.8	10h -6.5
_	93h	3	2.9		34h		.2		28h		10	41h	15	12h -7 14h -7.5
	94h 95h		3.1	_	35h 36h		.4		29h 2Ah	+	10.2	42h 43h	15.2 15.4	16h -8
	96h	_	3.2	_	37h	_	.5		2Bh		10.6	44h	15.6	18h -8.5
	97h	-	3.3	-	38h	_	.6		2Ch		10.8	45h	15.8	1Ah -9
_	98h	. 53	3.4	- 3	39h	1,0%	.7		2Dh	\perp	11	46h	16	1Ch -9.5
	99h 9Ah		3.5	_	BAh Bh	_	.8	-	2Eh	+	11.2	47h 48h	16.2 16.4	1Eh -10
	9Bh		3.7	90	BCh	1000	7		30h	1	11.6	49h	16.6	20h -10.5
_	9Ch	_	3.8		Dh	.70	.1		31h		11.8	4Ah	16.8	22h -11 24h -11.5
	9Dh 9Eh		3.9	_	BEh BFh		.2	\vdash	32h 33h	-	12.2	4Bh Othor	17	24ri -11.5 26h -12
_	9Fh	_	4.1	_	COh	10 10	.4	-	34h	+	12.4	Other	NA	28h -12.5
	A0h	1 %	4.2	-	C1h	7	.5		35h		12.6			2Ah -13
	A1h	_	4.3	_	C2h		.6		36h		12.8			2Ch -13.5
_	A2h A3h	_	4.4 4.5	+	23h 24h	_	.7	-	37h 38h	+	13.2			2Eh -14
_	A4h	_	4.6	100	25h	- 20	.9		39h		13.4			30h -14.5
_	A5h	_	4.7	-	C6h	_	8		3Ah		13.6			32h -15
_	A6h A7h	_	4.8 4.9	_	27h 28h	_	.2		3Bh		13.8			34h -15.5 36h -16
_	A8h	1	5	-	29h	77	1.3							38h -16.5
	A9h		5.1	C	CAh	8	1.4							3Ah -17
_	AAh	_	5.2	-	Bh	_	.5							Other NA
_	ABh ACh	3	5.3	- 139	Ch CDh	10.00	1.6							
_	ADh		5.5	128	Eh	-	.8							
	AEh	3	5.6	0	ther	N	IA							
0	0	08	0	0	0	0	1	0	0	0	Initial	Code Set	tina	Program Initial Code Setting
77. II.	37.8	- 5 1 5 3		10.50			,		750	0.50		rogram	9	
											10.00			The command required CLKEN=1.
														Refer to Register 0x22 for detail.
														BUSY pad will output high during
	. / 4													operation.
					ř		Y							7
0	0	09	0	0	0	0	1	0	0	1		Register t	or Initial	
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	Code	Setting		Selection
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo	1			A[7:0] ~ D[7:0]: Reserved
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	1			Details refer to Application Notes of Initi Code Setting
3	1	-	2000	E-1/65/6			150000	10.110	55.71	0.5533	-			Code Setting
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do				
0	0	0A	0	0	0	0	1	0	1	0			for Initial	Read Register for Initial Code Setting
											Code	Setting		

Om	D/C#	Hov	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
Jane -	2000000	Selving reco	200	III RES	100000	18/45/5	S12-151	000000	19912	535055	Command	Description
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start Control	Booster Enable with Phase 1, Phase 2 and Phase for soft start current and duration setting.
0	1		1	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control	AI7:01 > Coff start patting for Disposed
0	1		1	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		A[7:0] -> Soft start setting for Phase1 = 8Bh [POR]
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		B[7:0] -> Soft start setting for Phase2
0	1		0	0	D ₅	D ₄	D ₃	D ₂	D ₁	Do		= 9Ch [POR] C[7:0] -> Soft start setting for Phase3 = 96h [POR] D[7:0] -> Duration setting = 0Fh [POR]
												Bit Description of each byte: A[6:0] / B[6:0] / C[6:0]:
												Bit[6:4] Driving Strength Selection
												000 1(Weakest)
												001 2
												010 3
												011 4
												100 5
												101 6
												110 7
												111 8(Strongest)
												Bit[3:0] Min Off Time Setting of GDR [Time unit]
												0000 ~ NA 0011
												0100 2.6
												0101 3.2
												0110 3.9
												0111 4.6
												1000 5.4
												1001 6.3
												1010 7.3
												1011 8.4
												1100 9.8
												1101 11.5
												1110 13.8
								ľ				1111 16.5
												D[5:0]: duration setting of phase D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2 D[1:0]: duration setting of phase 1 Bit[1:0] Duration of Phase [Approximation]
												00 10ms
												01 20ms
												10 30ms
												11 40ms

0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep mode Control:
0	1		0	0	0	0	0	0	A ₁	Ao		A[1:0]: Description 00 Normal Mode [POR] 01 Enter Deep Sleep Mode 1 11 Enter Deep Sleep Mode 2 After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark: To Exit Deep Sleep mode, User required
									1 0			to send HWRESET to the driver
0	0	11	0	0	0	0	0	0 A2	0 A ₁	1 A ₀	Data Entry mode setting	Define data entry sequence A[2:0] = 011 [POR]
	1							A2	Al	70		A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 —Y decrement, X decrement, 01 —Y decrement, X increment, 10 —Y increment, X decrement, 11 —Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output
												high. Note: RAM are unaffected by this command.

0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A ₅	A4	0	A ₂	A ₁	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.

0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1		0	0	0	0	0	A ₂	A ₁	A ₀		A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect
												A[2:0] VCI level
												011 2.2V
												100 2.3V
												101 2.4V
												110 2.5V
												111 2.6V
												Other NA
												The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control	A[7:0] = 48h [POR], external temperatrum sensor A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1	10000000	A ₁₁	A ₁₀	A ₉	As	A ₇	A ₆	As	A ₄	Control (Write to	A[11:0] = 7FFh [POR]
0	1		Аз	A ₂	Aı	Ao	0	0	0	0	temperature register)	
0	0	1B	0	0	0	1	1	0	1	1	Tomporature Sensor	Read from temperature register.
1	1	ID	-	_			-	-	_	Λ	Temperature Sensor Control (Read from temperature register)	Read from temperature register.
1	1	8	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	0		
1			H3	H2	A	H ₀	U	U	U	U		

0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A ₇	A ₆	A ₅	A4	A ₃	A ₂	A ₁	Ao	Control (Write Command	sensor.
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo	to External temperature	A[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	sensor)	B[7:0] = 00h [POR], C[7:0] = 00h [POR],
												A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sense starts. BUSY pad will output high during operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence
												The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.
0	0	21		0	1	0	0	0	0	1		RAM content option for Display Update A[7:0] = 00h [POR]
0	1		A ₇	100,000	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		B[7:0] = 00h [POR]
0	1		D7	U	0	U	0	U	U	U		A[7:4] Red RAM option
												0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content
												A[3:0] BW RAM option
												0000 Normal
												0100 Bypass RAM content as 0 1000 Inverse RAM content
												1000 IIIVerse RAIN Content
												B[7] Source Output Mode
1												0 Available Source from S0 to S175
												1 Available Source from S8 to S167

0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Opt	ion:
0	1		A ₇	A ₆	A5	A ₄	A ₃	A ₂	A ₁	Ao	Control 2	Enable the stage for Master Ac A[7:0]= FFh (POR)	
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal → Enable Analog	СО
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	В1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	В9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
												Enable clock signal →Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entrice written into the BW RAM until a command is written. Address padvance accordingly	another
												For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =	

	man			D.C.	D.		P.O.	-	164	DA	C	December 1
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly.
						7						For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1,8	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during operation.
							_					open men
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1		0	1	0	0	A ₃	A ₂	A ₁	Ao		sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
0	1		0	0	0	0	0	1	0	0	Control	when ACVCOM toggle. Two data bytes
0	1		0	1	1	0	0	0	1	1	1	D04h and D63h should be set for this

	Service Services	d Ta										9			
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descript	tion		
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register				CU interface
0	1		A ₇	A6	A5	A ₄	A ₃	A ₂	A ₁	Ao		A[7:0] =	00h [POR]		
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
-								_		ļ					
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	egister for	Display C	Option:
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Display Option				
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo			VCOM OT		on
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		(Comm	and 0x37,	Byte A)	
				_	_			_		-		B[7:0]:	VCOM Re	gictor	
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀			and 0x2C		
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo		(Commi	did oneo		
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		C[7:0]~	G[7:0]: Dis	play Mod	е
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		(Comm	and 0x37,		
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	Ho		[5 bytes	s]		
1	1		17	16	15	14	l ₃	12	11	lo		1.117.01	V(7.01. W)		
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo			K[7:0]: Wa and 0x37,		
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K ₀		[4 bytes		Dyle O le	Dyte o)
	•		IX	110	113	1 14	143	11/2	111	10			2		
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10	Byte Use	r ID store	d in OTP:
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao					Byte A and
1	1		B ₇	B ₆	B ₅	B4	Вз	B ₂	B ₁	Bo		Byte J)	[10 bytes]		
-			_	-	-		-	-	-						
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀					
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do					
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Εo					
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo					
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go					
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H₀					
1	1		17	16	l ₅	14	lз	12	l ₁	lo					
1	1		J ₇	J ₆	Jo	Ja	J ₃	J ₂	J ₁	Jo					
		OF.									Otatua Dii Dana	Deville	-1-1 5::	DOD 5 3	41
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read		status Bit		1] g [POR=0]
1	1		0	0	A ₅	A ₄	0	0	A ₁	Ao		0: Ready		tection na	g [FOR-0]
												1: Not Re			
													Detection	flag [POF	R=0]
												0: Norma			
													wer than the	ne Detect	level
												A[3]: [PC	y flag [PO	R=01	
												0: Norma			
												1: BUSY			
												A[1:0]: C	hip ID [PO	R=01]	
												Remark:			
												F 157 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	A[4] status	s are not v	alid after
												RESET,	they need	to be initia	ated by
												comman	d 0x14 and		
- 1		ı 1										respectiv	elv.		

0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface
0	1	52	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Time Lo i Tegister	[153 bytes], which contains the content of
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR[n] and XON[nXY]
0	1			i.		:	:	1	2			Refer to Session 6.7 WAVEFORM
0	1		30-00	**			٠	•	•			SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command
U	0	34	U	U	ii.	1	U		U	U	CRC calculation	For details, please refer to SSD1680 application note.
												BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1		A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈		A[15:0] is the CRC read out value
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1		A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		0: Default [POR] 1: Spare
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		B[7:0] Display Mode for WS[7:0]
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D _o		C[7:0] Display Mode for WS[15:8]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	Fo		D[7:0] Display Mode for WS[23:16] E[7:0] Display Mode for WS[31:24]
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		F[3:0 Display Mode for WS[35:32]
0	1		H ₇	H ₅	H ₅	H ₄	Нз	H ₂	H ₁	Ho		0: Display Mode 1 1: Display Mode 2
0	1		17	l 6	l ₅	14	l ₃	12	l ₁	I ₀		The state of the s
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo		F[6]: PingPong for Display Mode 2 0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1

0 0 0 0 0 0 0	0 1 1 1 1 1 1 1 1	38	0 A ₇ B ₇ C ₇ D ₇ E ₇ F ₇ G ₇	0 A ₆ B ₆ C ₆ D ₆ E ₆ F ₆ G ₆	1 A ₅ B ₅ C ₅ D ₅ E ₅ F ₅ G ₅	1 A ₄ B ₄ C ₄ D ₄ E ₄ F ₄ G ₄	1 A ₃ B ₃ C ₃ D ₃ E ₃ F ₃ G ₃	0 A ₂ B ₂ C ₂ D ₂ E ₂ F ₂ G ₂	0 A ₁ B ₁ C ₁ D ₁ E ₁ F ₁ G ₁	0 A ₀ B ₀ C ₀ D ₀ E ₀ F ₀ G ₀	Write Register for User ID	A[7:0]]~J[7	ter for User ID :0]: UserID [10 bytes] [7:0]~J[7:0] can be stored in
0	1		J ₇	le Je	15 J ₅		J ₃	l ₂	J ₁	J ₀			
			3/	36	05	04	- 3	32	J1	30		Li .	
0	0	39	0	0	0	0	0	0	0 A ₁	1 A ₀	OTP program mode	A[1:0] = 11: programmin Remark: Us	Normal Mode [POR] Internal generated OTP
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control		er waveform for VBD
0	1		A7	A ₆	As	A ₄	0	Az	A ₁	Ao		A[7:0] = C0f A [7:6] :Sel A[7:6] :Sel A[7:6] :00 01 10 11[POR] A [5:4] Fix L A[5:4] 00 01 11 A[2] GS Tra A[2] 0 0 F	n [POR], set VBD as HIZ. ect VBD option Select VBD as GS Transition, Defined in A[2] and A[1:0] Fix Level, Defined in A[5:4] VCOM HiZ evel Setting for VBD VBD level VSS VSH1 VSL VSH2 nsition control GS Transition control Follow LUT Output VCOM @ RED) Follow LUT Collow LUT Transition setting for VBD VBD Transition LUT0 LUT1 LUT2 LUT3
0	0	2	0	0	4	1	4	4	1	1	End Option (EORT)	Option for I	LIT and
0	1	3F	0 A ₇	0 A ₆	1 A ₅	1 A ₄	1 A ₃	1 A ₂	1 A ₁	1 A ₀	End Option (EOPT)		[POR]
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM	Option
0	1		0	0	0	0	0	0	0	Ao	- San All Spayi	A[0]= 0 [PO 0 : Read RA	
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the	start/end positions of the
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Start / End position	window add	ress in the X direction by an
0	1		0	0	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		address uni	

0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify	the start/e	nd positio	ons of the
0	1		A ₇	A ₆	A5	A ₄	A ₃	A ₂	A ₁	Ao	Start / End position	window	address in	n the Y dir	
0	1		0	0	0	0	0	0	0	A ₈		address	unit for R	AIVI	
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo			'SA[8:0], \		
0	1		0	0	0	0	0	0	0	Ва		B[8:0]: Y	'EA[8:0], \	YEnd, PC)R = 127
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM for	Auto Write	RED RA	M for Reg	ular Patte
0	1		A7	A ₆	As	A4	0	A ₂	A ₁	Ao	Regular Pattern	A[7:0] = 00 A[7]: The A[6:4]: Ste Step of alt to Gate	1st step va	POR= 00	0
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
												A[2:0]: Ste Step of alt to Source A[2:0]	ter RAM in		
												000	8	100	128
												100-50-015			10000000
												001	16	101	176
												010	32	110	NA
												011	64	111	NA
												BUSY pac operation.		ut high du	ring
												A[7]: The	1st step va	alue. POR	
												A[6:4]: Ste Step of alt to Gate	ep Height, ter RAM in	POR= 00 Y-direction	on accord
												Step of alt to Gate A[6:4]	ep Height, ter RAM in Height	POR= 00 Y-direction A[6:4]	on accord
												Step of alt to Gate A[6:4]	ep Height, ter RAM in Height 8	POR= 00 Y-direction A[6:4]	Height
												Step of alt to Gate A[6:4] 000 001	ep Height, ter RAM in Height 8	POR= 00 Y-direction A[6:4]	Height 128 256
												Step of alt to Gate	Height, Height Height 8 16 32	POR= 00 Y-direction A[6:4] 100 101 110	Height 128 256 296
												Step of alt to Gate A[6:4] 000 001	ep Height, ter RAM in Height 8	POR= 00 Y-direction A[6:4] 100 101	Height 128 256
												Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Step of alt to Source	ep Height, ler RAM in Height 8 16 32 64 ep Width, ler RAM in	POR= 000 1 Y-direction 1 Y-direction 1 100 1 110 1 111 POR= 000 1 X-direction	Height 128 256 296 NA
												Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of alt to Source A[2:0]	Height Height 8 16 32 64 Pep Width, iter RAM in Width	POR = 000 1 Y-direction 100 101 110 111 POR = 000 1 X-direction A[2:0]	Height 128 256 296 NA
												Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of alt to Source A[2:0] 000	Height Height 8 16 32 64 Ep Width, Iter RAM in Width 8	POR= 000 1 Y-direction 100 101 110 111 POR= 000 1 X-direction A[2:0] 100	Height 128 256 296 NA On accord Width 128
												Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of alt to Source A[2:0] 000 001	Height Height 8 16 32 64 Pep Width, ter RAM in Width 8 16	POR= 000 1 Y-direction 100 101 110 111 POR= 000 1 X-direction A[2:0] 100 101	Height 128 256 296 NA On accord Width 128 176
												Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of alt to Source A[2:0] 000	Height Height 8 16 32 64 Ep Width, Iter RAM in Width 8	POR= 000 1 Y-direction 100 101 110 111 POR= 000 1 X-direction A[2:0] 100	Height 128 256 296 NA On accord Width 128
												Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of alt to Source A[2:0] 000 001	Height Height 8 16 32 64 Pep Width, ter RAM in Width 8 16	POR= 000 1 Y-direction 100 101 110 111 POR= 000 1 X-direction A[2:0] 100 101	Height 128 256 296 NA On accord Width 128 176
												Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of alt to Source A[2:0] 000 001 010	Height Height 8 16 32 64 Pep Width, Iter RAM in Width 8 16 32 64	POR= 000 1 Y-direction 100 101 110 111 POR= 000 1 X-direction 101 110 111 110 111	Height 128 256 296 NA On accord Width 128 176 NA NA
	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of alt to Source A[2:0] 000 001 010 011 During open	Height B 16 32 64 Width B 16 32 64 Width B 16 32 64 Width B 16 32 64	POR= 000 17-direction 100 101 110 111 POR= 000 1X-direction 100 101 110 111 USY pad v	Height 128 256 296 NA On accord Width 128 176 NA NA will outpu
_	0 1	4E	0 0	1 0	0 A ₅	0 A4	1 A ₃	1 A ₂	1 A ₁	0 0	Set RAM X address counter	Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of alt to Source A[2:0] 000 001 010 011 During ophigh. Make initia address ir	Height Height 8 16 32 64 Exp Width, Iter RAM in Width 8 16 32 64 eration, Black and settings in the addrese in RAM in the control of the control	POR= 000 1 Y-direction 100 101 110 111 POR= 000 1 X-direction 100 101 110 111 USY pad v	Height 128 256 296 NA On accord Width 128 176 NA NA will outpu
_		4E				-				272		Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of alt to Source A[2:0] 000 001 010 011 During ophigh. Make initia	Height Height 8 16 32 64 Exp Width, Iter RAM in Width 8 16 32 64 eration, Black and settings in the addrese in RAM in the control of the control	POR= 000 1 Y-direction 100 101 110 111 POR= 000 1 X-direction 100 101 110 111 USY pad v	Height 128 256 296 NA On accord Width 128 176 NA NA will outpu
	0	4E				-				272	counter Set RAM Y address	Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of alt to Source A[2:0] 000 001 010 011 During ophigh. Make initia address ir A[5:0]: 000	ep Height, ler RAM in Height 8 16 32 64 ep Width, ler RAM in Width 8 16 32 64 eration, Black all settings in the address in th	POR= 000 17-direction A[6:4] 100 101 110 111 POR= 000 17-direction A[2:0] 100 101 110 111 USY pad viscos counted for the Reference in the Refe	Height 128 256 296 NA On accord Width 128 176 NA NA will outpu
	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	counter	Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Step of alt to Source A[2:0] 000 001 010 011 During ophigh. Make initia address in A[5:0]: 000	ep Height, ler RAM in Height 8 16 32 64 ep Width, ler RAM in Width 8 16 32 64 eration, Black all settings in the address the a	POR= 000 17-direction A[6:4] 100 101 110 111 POR= 000 17-direction A[2:0] 100 101 110 111 USY pad virial for the Ruless counter for the Ruless counter for the Ruless counter for the Ruless counter for the Ruless counter	Height 128 256 296 NA On accord Width 128 176 NA NA will outpu
	0		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	counter Set RAM Y address	Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of alt to Source A[2:0] 000 001 010 011 During ophigh. Make initia address ir A[5:0]: 000	ep Height, ler RAM in Height 8 16 32 64 ep Width, ler RAM in Width 8 16 32 64 eration, Black all settings in the address the a	POR= 000 17-direction A[6:4] 100 101 110 111 POR= 000 17-direction A[2:0] 100 101 110 111 USY pad virial for the Ruless counter for the Ruless counter for the Ruless counter for the Ruless counter for the Ruless counter	Height 128 256 296 NA On accord Width 128 176 NA NA will outpu
	0 1		0 0 A ₇	0 1 A ₆	0 A ₅	0 A ₄	A ₃	A ₂	1 A ₁	1 A ₀ A ₈	counter Set RAM Y address	Step of alt to Gate A[6:4] 000 001 010 011 A[2:0]: Step of alt to Source A[2:0] 000 001 010 011 During ophigh. Make initia address in A[5:0]: 000	ep Height, ler RAM in Height 8 16 32 64 ep Width, ler RAM in Width 8 16 32 64 eration, Black al settings in the address in the	POR= 000 A[6:4] 100 101 110 111 POR= 000 A[2:0] 100 101 110 111 USY pad v ress counter for the Riess counter ress counter	Height 128 256 296 NA Width 128 176 NA NA will outpu AM X er (AC)

7. Electrical Characteristics

7.1. Absolute maximum rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +4.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	°C
Optimal Storage Temp	TSTGo	23±2	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

7.2. Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C

Parameter	Symbol	Conditions	Applica ble pin	Min.	Тур.	Max	Units
Single ground	V_{SS}	-		-	0	-	V
Logic supply voltage	V_{CI}	-	VCI	2.2	3.0	3.7	V
Core logic voltage	$V_{ ext{DD}}$		VDD	1.7	1.8	1.9	V
High level input voltage	V_{IH}	-	-	0.8 V _{CI}	-	-	V
Low level input voltage	V _{IL}	-	-	-	-	0.2 V _{CI}	V
High level output voltage	V_{OH}	IOH = - 100uA	-	0.9 VCI	-	-	V
Low level output voltage	V _{OL}	IOL = 100uA	-	_	-	0.1 V _{CI}	V
Typical power	P_{TYP}	$V_{CI}=3.0V$	-	-	TBD	-	mW
Deep sleep mode	P_{STPY}	$V_{CI}=3.0V$	-	-	0.003	-	mW
Typical operating current	Iopr_V _{CI}	$V_{CI}=3.0V$	-	-	TBD	-	mA
Full update time	-	25 °C	-	-	3	-	sec
Fast update time	-	25 °C	-	-	1.5	-	sec
Partial update time	-	25 °C	-	-	0.42	-	sec
Sleep mode current	Islp_V _{CI}	DC/ DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	Idslp_V _{CI}	DC/ DC off No clock No input load Ram data not retain	-	-	2	6	uA

Notes:

1) Refresh time: the time it takes for the whole process from the screen change to the screen stabilization.

2) The difference between different refresh methods:

Full refresh: The screen will flicker several times during the refresh process;

Fast Refresh: The screen will flash once during the refresh process;

Partial refresh: The screen does not flicker during the refresh process.

Note: During the fast refresh or partial refresh of the electronic paper, it is recommended to add a full-screen refresh after 5 consecutive operations to reduce the accumulation of afterimages on the screen.

Notes: 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.

- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Good Display.

7.3. Panel AC Characteristics

7.3.1. MCU Interface

The pin assignment at different interface mode is summarized in Table 7.4.1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name	Data/Comma	nd Interface		Control Signal			
Bus interface	SDA	SCL	CS#	D/C#	RES#		
BS1=L 4-wire SPI	SDA	SCL	CS#	D/C#	RES#		
BS1=H 3-wire SPI	SDA	SCL	CS#	L	RES#		

7.3.2. MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

Function	CS#	D/C#	SCL
Write command	L	L	1
Write data	L	Н	1

Note: ↑ stands for rising edge of signal

Note:

In the write mode SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM /Data Byte register or command Byte register according to D/C# pin.

Figure 7-1: Write procedure in 4-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on every falling adge of SCL in the order of D7, D6, ... D0.
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

Figure 7-2: Read procedure in 4-wire SPI mode

7.3.3. MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

nction	CS#	D/C#	SCL
Write command	L	Tie	↑
Write data	L	Tie	↑

Note: ↑ stands for rising edge of signal

Figure 7-3: Write procedure in 3-wire SPI

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. D/C=0 is shifted thru SDA with one rising edge of SCL
- 3. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, \dots D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

Figure 7-4: Read procedure in 3-wire SPI mode

7.3.4. Interface Timing

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Serial Interface Timing Characteristics

(VIC - VSS = 2.2V to 3.7V, TOPR = 25%, CL = 20pF

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fscL	SCL frequency (Write Mode)			20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60			ns
tcsHLD	Time CS# has to remain low after the last falling edge of SCLK	65			ns
tcsнigh	Time CS# has to remain high between two transfers	100			ns
tschiigh	Part of the clock period where SCL has to remain high	25			ns
tscllow	Part of the clock period where SCL has to remain low	25			ns
t _{sisu}	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tsiHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Read Mode)			2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	50			ns
tcsнigh	Time CS# has to remain high between two transfers	250			ns
tsclnigh	Part of the clock period where SCL has to remain high	180			ns
tscllow	Part of the clock period where SCL has to remain low	180			ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tsohld	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

8. Optical Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	ı	%	8-1
CR	Contrast Ratio	Indoor	8:1		ı		8-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 25 °C		3	•	sec	
Life		Topr		1000000times or 5years			

Notes:

- 8-1. Luminance meter: Eye-One Pro Spectrophotometer.
- 8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.
- 8-3. WS: White state, DS: Dark state

9. Block Diagram

10. Reference Circuit

11. Matched Development Kit

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh black-white E-paper Display and three-color (black, white and red/Yellow) Good Display 's E-paper Display. And it is also added the functions of USB serial port, Raspberry Pi and LED indicator light ect.

DESPI Development Kit consists of the development board and the pinboard.

More details about the Development Kit, please click to the following link:

https://www.good-display.com/product/53/

12. Handling, Safety and Environmental Requirements

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care.

Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status

Product specification | The data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134).

Stress above one or more of the limiting values may cause permanent damage to the device.

These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

D d at	F	
Product	Environmental	certification

RoHS

13. Packing

14. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL / EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.