

1.54 inch E-paper Display Series

GDEY0154D61LT

Dalian Good Display Co., Ltd.

Product Specifications

Customer	Standard		
Description	1.54" E-PAPER DISPLAY		
Model Name	GDEY0154D61LT		
Date	2024/01/29		
Revision	1.1		

Design Engineering			
Approval	Design		
宝刘印玉	燕修印凤	之吴印良	

No.18, Zhonghua West ST, Ganjingzi DST, Dalian, CHINA

Tel: +86-411-84619565

Email: info@good-display.com

Website: www.good-display.com

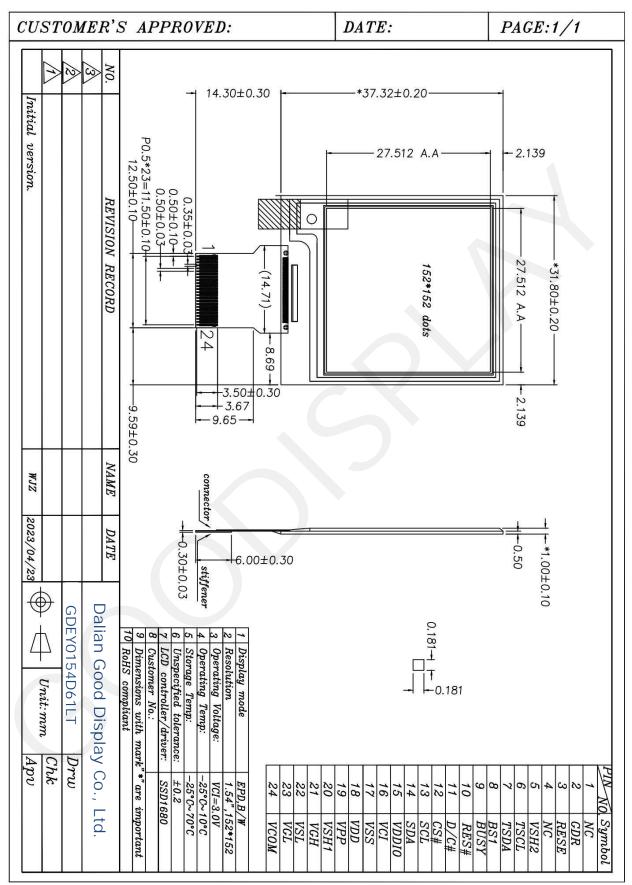
CONTENTS

1. Over View	4
2. Features	4
3. Mechanical Specifications	4
4. Mechanical Drawing of EPD module	5
5. Input /Output Pin Assignment	6
6. Electrical Characteristics	7
7. Command Table	12
8. Optical Specifications	26
9. Typical Application Circuit with SPI Interface	26
10. Reliability test	27
11. Typical Operating Sequence	28
12. Inspection method and condition	29
13. Matched Development Kit	33
14. Handling, Safety and Environment Requirements	34
15. Packaging	35
16. Precautions	36

1. Over View

GDEY0154D61LT is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black full display capabilities. The 1.54 inch active area contains 152×152 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2. Features


- 152x152 pixels display
- High contrast, High reflectance
- Ultra wide viewing angle, Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Operating temperature: -25 ~ 10
- Landscape, portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Waveform stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and source driving voltage .
- I²C signal master interface to read external temperature sensor
- Built-in temperature sensor

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	1.54	Inch	
Display Resolution	152(H)×152(V)	Pixel	Dpi:140
Active Area	27.512×27.512	mm	
Pixel Pitch	0.181×0.181	mm	
Pixel Configuration	Square		
Outline Dimension	31.8(H)×37.32(V) ×1.0 (D)	mm	
Weight	2.3±0.5	g	

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark	
1	NC		Do not connect with other NC pins	Keep Open	
2	GDR	0	N-Channel MOSFET Gate Drive Control		
3	RESE	Ι	Current Sense Input for the Control Loop		
4	NC	NC	Do not connect with other NC pins	Keep Open	
5	VSH2	С	Positive Source driving voltage(Red)		
6	TSCL	О	This pin is I ² C Interface to digital temperature sensor Clock pin. External pull up resistor is required when connecting to I ² C slave. When not in use: VSS.		
7	TSDA	I/O	This pin is I ² C Interface to digital temperature sensor Data pin. External pull up resistor is required when connecting to I ² C slave. When not in use: VSS.		
8	BS1	Ι	Bus Interface selection pin	Note 5-5	
9	BUSY	0	Busy state output pin	Note 5-4	
10	RES#	Ι	Reset signal input. Active Low.	Note 5-3	
11	D/C#	Ι	Data /Command control pin	Note 5-2	
12	CS#	Ι	Chip select input pin	Note 5-1	
13	SCL	Ι	Serial Clock pin (SPI)		
14	SDA	I/O	Serial Data pin (SPI)		
15	VDDIO	Р	Power Supply for interface logic pins It should be connected with VCI		
16	VCI	Р	Power Supply for the chip		
17	VSS	Р	Ground		
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS		
19	VPP	Р	FOR TEST		
20	VSH1	С	Positive Source driving voltage		
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1		
22	VSL	С	Negative Source driving voltage		

도 GooDisplay

23	VGL		Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	С	VCOM driving voltage	

I = Input Pin, O =Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C =Capacitor Pin

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW;

Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command;

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low;

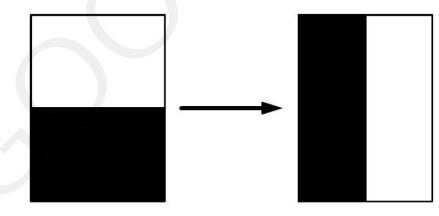
Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when –Outputting display waveform -Communicating with digital temperature sensor;

Note 5-5: Bus interface selection pin.

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. Electrical Characteristics

6.1 Absolute Maximum Rating


Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +6.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	-25 to +10	°C
Storage Temp range	TSTG	-25 to+70	° C
Optimal Storage Temp	TSTGo	23±2	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

Parameter	Symbol	Conditions	Applica ble pin	Min.	Тур.	Max	Units
Single ground	V_{SS}	-		-	0	-	V
Logic supply voltage	V _{CI}	-	VCI	2.2	3.0	3.7	V
Core logic voltage	V _{DD}		VDD	1.7	1.8	1.9	V
High level input voltage	V _{IH}	-	-	0.8V _{CI}	-	-	V
Low level input voltage	V _{IL}	-	-	0	-	0.2V _{CI}	V
High level output voltage	V _{OH}	IOH = -100uA	-	0.9VCI	-	-	V
Low level output voltage	V _{OL}	IOL = 100uA	-	-	-	0.1 V _{CI}	V
Typical power	P _{TYP}	V _{CI} =3.0V	-	-	5.1	-	mW
Deep sleep mode	P _{STPY}	V _{CI} =3.0V	-	-	0.003	-	mW
Typical operating current	Iopr_V _{CI}	V _{CI} =3.0V	-	-	1.7	-	mA
Image update time	-	10 °C	-	-	7	-	sec
Sleep mode current	Islp_V _{CI}	DC/DC off No clock No input load Ram data retain		-	20		uA
Deep sleep mode current	Idslp_V _{CI}	DC/DC off No clock No input load Ram data not retain).	_	1	5	uA

6.2 Panel DC Characteristics

Notes: 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.

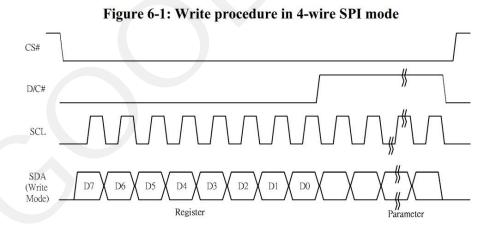
- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Good Display.

6.3 Panel AC Characteristics

6.3.1 MCU Interface Selection

The pin assignment at different interface mode is summarized in Table 6-4-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name	Data/Comma	nd Interface	Control Signal		
Bus interface	SDA	SCL	CS#	D/C#	RES#
BS1=L 4-wire SPI	SDA	SCL	CS#	D/C#	RES#
BS1=H 3-wire SPI	SDA	SCL	CS#	L	RES#

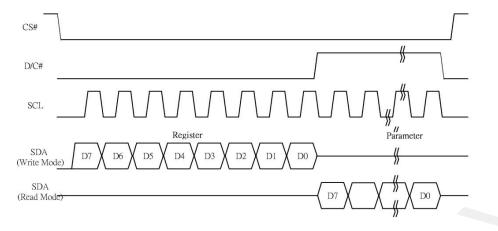

6.3.2 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

Function	CS#	D/C#	SCL
Write command	L	L	1
Write data	L	Н	1

Note: † stands for rising edge of signal

In the write mode SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte . The data byte in the shift register is written to the Graphic Display Data RAM /Data Byte register or command Byte register according to D/C# pin.

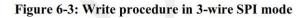


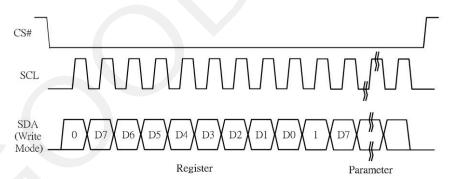
In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

🔄 GooDisplay

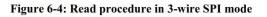
Figure 6-2: Read procedure in 4-wire SPI mode

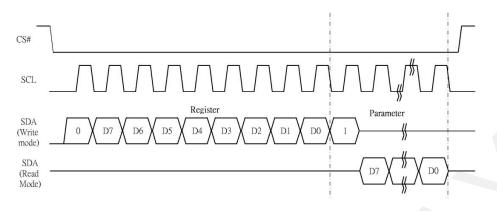

6.3.3 MCU Serial Interface (3-wire SPI)


The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

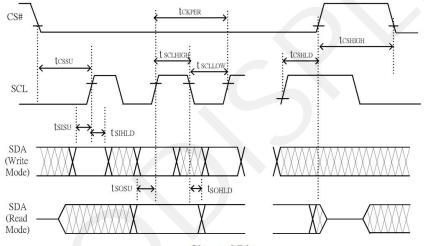
The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

Function	CS#	D/C#	SCL
Write command	L	Tie	1
Write data	L	Tie	1


Note: † stands for rising edge of signal



In the Read mode:


- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. D/C=0 is shifted thru SDA with one rising edge of SCL
- 3. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

6.3.4 Interface Timing

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Changed Diagram

Serial Interface Timing Characteristics

(VCI - VSS = 2.2V to 3.7V, TOPR = 25°C, CL=20pF)

W	rite	mo	ode
-			

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Write Mode)			20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60			ns
t _{CSHLD}	Time CS# has to remain low after the last falling edge of SCLK	65			ns
t _{csнigн}	Time CS# has to remain high between two transfers	100			ns
t _{scl} high	Part of the clock period where SCL has to remain high	25			ns
tscllow	Part of the clock period where SCL has to remain low	25			ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tsihld	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns
Read m	ode		2 		
Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Read Mode)			2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100			ns
t _{CSHLD}	Time CS# has to remain low after the last falling edge of SCLK	50			ns
t _{cshigh}	Time CS# has to remain high between two transfers	250	()) ()		ns
tsclhigh	Part of the clock period where SCL has to remain high	180			ns
tscllow	Part of the clock period where SCL has to remain low	180			ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns

7. Command Table

mand	0 0	D1	D2	D3	D4	DE	Contractory of the	2000.000	Same and	a second	
			DZ	05	D4	D5	D6	D7	Hex	D/C#	R/W#
r Output cont	0	0	0	0	0	0	0	0	01	0	0
	0	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇		1	0
		0		0						1	0
	0	B1	B ₂	0	0	0	0	0		1	0
		1	0	0	0	0	0	0	03	0	0
ol	0	A ₁	A ₂	A ₃	A ₄	0	0	0		1	0
	- []										
Driving volta ol	8 0	0 B1		0	0 0 0 B ₂	0 0 0 0 0 B2	0 0 0 0 0 0 0 B2 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 B2	0 0 0 0 0 0 0 0 0 0 B2 0 0 0 0 0 0 B2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 B2 0 0 0 0 0 0 0 B2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 03 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 B2 1 0 0 0 0 0 0 0 0 B2 1 0 0 0 0 0 0 0 0 9 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

🗗 GooDisplay

/ W# 0	D/C#	11111	10000	and the second second second										
0		Hex	D7	D6	D5	D4	D3	D2	D1	D0	Comma	and		Description
	0	04	0	0	0	0	0	1	0	0		Driving	voltage	Set Source driving voltage
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A	Control			A[7:0] = 41h [POR], VSH1 at 15V
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo]			B[7:0] = A8h [POR], VSH2 at 5V. C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀]			Remark: VSH1>=VSH2
A[7]	/B[7]	= 1,						A[7]/B[7	7] = 0),			C[7] = 0,
	11/VS	SH2 v	oltag	e se	tting	from	2.4V			/SH2	voltage	setting f	from 9V	VSL setting from -5V to -17V
to 8	.8V B[7:0]	VSH	1/VSH2	A/B	8[7:0]	VSH1	/VSH2		17V A/B[7:0]	VS	H1/VSH2	A/B[7:0]	VSH1/VSH	2 C[7:0] VSL
	BEh	-	2.4		Fh		.7		23h		9	3Ch	14	0Ah -5
	8Fh 90h	-	2.5 2.6		0h 1h		.8		24h 25h	_	9.2 9.4	3Dh 3Eh	14.2 14.4	0Ch -5.5
	91h		2.7	1.20	2h	2002	6		26h		9.6	3Fh	14.4	0Eh -6
	92h		2.8		3h		.1		27h		9.8	40h	14.8	10h -6.5 12h -7
	93h 94h	-	2.9 3		4h 5h		.2 .3	\vdash	28h 29h	-	10 10.2	41h 42h	15 15.2	14h -7.5
9	95h		3.1	В	6h	6	.4		2Ah		10.4	43h	15.4	16h -8
	96h 97h	-	3.2 3.3	_	7h 8h	100	.5	\vdash	2Bh 2Ch	-	10.6	44h 45h	15.6 15.8	18h -8.5 1Ah -9
	98h	-	3.4		9h		.7		2Dh		11	46h	16	1Ah -9 1Ch -9.5
	99h 9Ah		3.5 3.6		Ah Bh		.8 .9		2Eh 2Fh		11.2 11.4	47h 48h	16.2 16.4	1Eh -10
1.2	9Bh		3.7		Ch		.9 7	\vdash	30h	+	11.4	40n 49h	16.4	20h -10.5
	9Ch		3.8		Dh		.1		31h		11.8	4Ah	16.8	22h -11 24h -11.5
	9Dh 9Eh	-	3.9 4		Eh		.2	\vdash	32h 33h	-	12	4Bh Other	17 NA	26h -12
	9Fh	_	4.1		Oh		.4		34h		12.4			28h -12.5
	A0h A1h		4.2 4.3	_	1h 2h		.5 .6		35h 36h	_	12.6 12.8			2Ah -13
	A2h	-	4.4	-	3h		.7		37h		13			2Ch -13.5 2Eh -14
	A3h	-	4.5	-	4h		.8		38h	-	13.2			30h -14.5
	A4h A5h		4.6 4.7		:5h :6h	-	.9 B		39h 3Ah	-	13.4 13.6			32h -15
	A6h	-	4.8		7h		.1		3Bh		13.8			34h -15.5
	A7h A8h	-	4.9 5		8h 9h		.2							36h -16 38h -16.5
1	A9h		5. <mark>1</mark>	С	Ah	8	.4							3Ah -17
	AAh ABh	-	5.2 5.3		Bh		.5 .6							Other NA
	ACh	-	5.4	-	Dh	-	.7							
	ADh AEh	-	5.5 5.6		Eh ther		.8 IA							
,			5.0											
0	0	08	0	0	0	0	1	0	0	0		ode Sett	ing	Program Initial Code Setting
											OTP Pr	ogram		
														The command required CLKEN=1. Refer to Register 0x22 for detail.
														BUSY pad will output high during
														operation.
0	0	09	0	0	0	0	1	0	0	1	Write R	egister fo	or Initial	Write Register for Initial Code Setting
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A	Code S			Selection
0	1	-	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	1			A[7:0] ~ D[7:0]: Reserved
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	1			Details refer to Application Notes of Initia Code Setting
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do	1			
0	0	0A	0	0	0	0	1	0	1	0	Read R Code S		or Initial	Read Register for Initial Code Setting

Com	man	d Tal	ole									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable with Phase 1, Phase 2 and Phase
0	1		1	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control	for soft start current and duration setting.
0	1		1	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		A[7:0] -> Soft start setting for Phase1 = 8Bh [POR]
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		B[7:0] -> Soft start setting for Phase2
0	1		0	0	D ₅	D4	D3	D ₂	D1	Do		= 9Ch [POR] C[7:0] -> Soft start setting for Phase3 = 96h [POR] D[7:0] -> Duration setting = 0Fh [POR] Bit Description of each byte:
												A[6:0] / B[6:0] / C[6:0]: Bit[6:4] Driving Strength Selection
												000 1(Weakest)
												001 2
												010 3
												011 4
												100 5
												101 6
												110 7
												111 8(Strongest)
											S	Bit[3:0] Min Off Time Setting of GDR [Time unit] 0000 . ~ NA 0011 . 0100 2.6 0101 3.2 0110 3.9 0111 4.6
												1000 5.4
									ľ			1001 6.3
												1010 7.3
												1011 8.4
												1100 9.8
												1101 11.5
												1110 13.8
												1111 16.5
												D[5:0]: duration setting of phase D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2 D[1:0]: duration setting of phase 1 Bit[1:0] Duration of Phase [Approximation]
												00 10ms
												01 20ms
												10 30ms
												11 40ms

0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep mode Control:
0	1		0	0	0	0	0	0	A ₁	Ao		A[1:0]: Description 00 Normal Mode [POR] 01 Enter Deep Sleep Mode 1 11 Enter Deep Sleep Mode 2 After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark: To Exit Deep Sleep mode, User required to send HWRESET to the driver
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1		0	0	0	0	0	A2	A1	A ₀		A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 –Y decrement, X decrement, 01 –Y decrement, X decrement, 10 –Y increment, X decrement, 11 –Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.

0	0	14	0	0	0	1	0	1	0	0	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A5	A ₄	0	A ₂	Aı	Ao	A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.

0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1		0	0	0	0	0	A ₂	A ₁	A		A[2:0] = 100 [POR] , Detect level at 2.3V
									100			A[2:0] : VCI level Detect
												A[2:0] VCI level
												011 2.2V
												100 2.3V
												101 2.4V
												110 2.5V
												111 2.6V
												Other NA
												The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1	0.0500	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A	A	Control	A[7:0] = 48h [POR], external temperatrure
-			0.0			0.7						sensor
_			_									A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A11	A10	A ₉	A ₈	A7	A ₆	A ₅	A ₄	Control (Write to	A[11:0] = 7FFh [POR]
0	1		A3	A ₂	A ₁	Ao	0	0	0	0	temperature register)	and a control of a state of the
												-
0	0	1 B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1		A11	A10	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Read from temperature register)	
1	1		A ₃	A ₂	A ₁	Ao	0	0	0	0	(comperature register)	

🗗 GooDisplay

1C 0 Ατ Βτ Cτ	A7 A6 B7 B6	6 A5 6 B5	1 A ₄ B ₄ C ₄	1 A ₃ B ₃ C ₃	1 A2 B2 C2	0 A1 B1 C1	0 A ₀ B ₀ C ₀	Temperature Sensor Control (Write Command to External temperature sensor)	A[7:0] = 00h [POR], B[7:0] = 00h [POR], B[7:0] = 00h [POR], C[7:0] = 00h [POR], A[7:6]
B ₇	B7 B6	5 B 5	B ₄	B ₃	B ₂	B ₁	Bo		B[7:0] = 00h [POR], $C[7:0] = 00h [POR],$ $A[7:6]$ $A[7:6] Select no of byte to be sent$ $00 Address + pointer$ $01 Address + pointer + 1st parameter$ $10 Address + pointer + 1st parameter + 2nd pointer$
								.sensor)	C[7:0] = 00h [POR], $A[7:6]$ $A[7:6] Select no of byte to be sent$ $00 Address + pointer$ $01 Address + pointer + 1st parameter$ $10 Address + pointer + 1st parameter + 2nd pointer$
	57 0	6 U 5	64	03	02	01	0		A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer
									Â[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer
									A[5:0] – Pointer Setting B[7:0] – 1 st parameter C[7:0] – 2 nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sensor starts. BUSY pad will output high during operation.
20 0	0 0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is
									located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.
21 (0 () 1	0	0	0	0	1	Display Update Control	RAM content option for Display Update
		6 A5	A ₄	A ₃	A ₂	A ₁	A ₀	1	A[7:0] = 00h [POR] B[7:0] = 00h [POR]
F	B7 (0 0	0	0	0	0	0		
									A[7:4] Red RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content A[3:0] BW RAM option 0000 0000 Normal
									0100Bypass RAM content as 01000Inverse RAM content
									B[7] Source Output Mode
									0 Available Source from S0 to S175
									1 Available Source from S8 to S167
	_								B7 0 0 0 0 0 0 0 0

0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Opti	
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control 2	Enable the stage for Master Ac A[7:0]= FFh (POR)	
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal ➔ Enable Analog	CO
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												> Disable clock signal	
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	B 9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
											5	Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entrie written into the BW RAM until a command is written. Address p advance accordingly	another
												For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =	

0 0 27 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 Read RAM After this command, data read MCU bus will fetch data from FACCOrding to parameter of Reg select reading RAM0x24/ RAM another command is written. At pointers will advance according the tech data from FACCORD to the select reading RAM0x24/ RAM another command is written. A pointers will advance according to parameter of Reg select reading RAM0x24/ RAM another command is written. A pointers will advance according to parameter of Reg select reading RAM0x24/ RAM another command is written. A pointers will advance according to parameter of Reg select reading RAM0x24/ RAM another command is written. ANLOGEN=1 0 0 28 0 0 1 0 0 VCOM Sense Enter VCOM sensing condition for duration defined in 29h bef VCOM voltage is a register 0 0 29 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 <t< th=""><th>Com</th><th>man</th><th>d Ta</th><th>ble</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Com	man	d Ta	ble									
0 0 27 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 Read RAM After this command, data read MCU bus will letch data from the AcM(RED): 0 0 27 0 0 1 0 1 1 1 Read RAM After this command, data read MCU bus will letch data from the Acording to parement of Reg select reading RAM0x24/ RAM another command is written. A pointers will advance according the the according to parement of Reg select reading RAM0x24/ RAM another command is written. A pointers will advance according to parement of Reg select reading RAM0x24/ RAM another command is written. ALLOGEN=1 0 0 28 0 0 1 0 0 VCOM Sense Enter VCOM sensing condition for duration defined in 29h bef VCOM voltage is a register. The sensed VCOM voltage is a register 0 0 28 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 </th <th>R/W#</th> <th>D/C#</th> <th>Hex</th> <th>D7</th> <th>D6</th> <th>D5</th> <th>D4</th> <th>D3</th> <th>D2</th> <th>D1</th> <th>D0</th> <th>Command</th> <th>Description</th>	R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0 0 27 0 0 1 0 0 1 1 1 1 Read RAM After this command, data read MCU bus will fetch data from FAccording to parameter of Reg select reading RAM0x24/RAM another command is written. A pointers will advance according to parameter of Reg select reading RAM0x24/RAM another command is written. A pointers will advance according to parameter of Reg select reading RAM0x24/RAM another command is written. A pointers will advance according to parameter of Reg select reading RAM0x24/RAM another command is written. A pointers will advance according to parameter of Reg select reading RAM0x24/RAM another command is written. A pointers will advance according to parameter of Reg select reading RAM0x24/RAM another command is written. A pointers will advance according to the parameter of Reg select reading RAM0x24/RAM another command is written. A pointers will advance according to parameter of Reg select reading RAM0x24/RAM another command is written. A pointers will advance according to the parameter of Reg select reading RAM0x24/RAM another command is written. A pointers will advance according to the parameter of Reg select reading RAM0x24/RAM another command is written. A pointers will advance according to the parameter of Reg select reading RAM0x24/RAM another command is written. A pointers will advance according to the parameter of Reg select reading RAM0x24/RAM another command is written. A pointer command is written. A nanomal is used to reduce to reduce the reading RAM0x24/RAM another command is used to reduce to reduce the reading RAM0x24/RAM another command is used to reduce to reduce to reduce the reading RAM0x24/RAM another command is used to reduce to reduce the reading RAM0x24/RAM another command is used to reduce to reduce the reading RAM0x24/RAM another accordina tonother ADVCOM tenden RAM0x24	0	0	26	0	0	1	0	0	1	1	0		For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]:
0 0 28 0 1 0 1 0 0 0 0 28 0 1 0 1 0 0 0 0 28 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 VCOM Sense Enter VCOM sensing condition for duration defined in 29h befee VCOM value. The sensed VCOM voltage is stregister 0 0 29 0 1 0 1 0 1 Refer to Register 0x22 for deta BUSY pad will output high duri operation. 0 0 29 0 1													Content of Write RAM(RED) = 0
0 0 28 0 0 1 0 0 0 VCOM Sense Enter VCOM sensing condition for duration defined in 29h beft VCOM value. The sensed VCOM voltage is a register 0 0 29 0 1 0 1 0 1 Refer to Register 0x22 for deta BUSY pad will output high duri operation. 0 0 29 0 1 0 1 0 1 Refer to Register 0x22 for deta BUSY pad will output high duri operation. 0 1 0 1 0 0 1 VCOM Sense Duration Stabling time between entering sensing mode and reading acc A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0] 0 0 2A 0 1 0 1 0 Program VCOM OTP Program VCOM register into C The command required CLKEP Refer to Register 0x22 for deta BUSY pad will output high duri operation. 0 0 2B 0 1 0 1 1 0 1 0 0 0 2B 0 1 0 1 0 1 0 1 0 0 0 2B 0 1 0	0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly.
0 0 29 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0													The 1st byte of data read is dummy data.
0 0 29 0 0 1 0	0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during
0 1 0 1 0 0 A3 A2 A1 A0 sensing mode and reading accord A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0] = 9h, duration = (A[3:0													
0 0 2B 0 1 0 1 1 1 Write Register for VCOM This command is used to reduin the provided to redu			29				1000 M					VCOM Sense Duration	Stabling time between entering VCOM sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0 0 2B 0 0 1 0 1 1 1 Write Register for VCOM This command is used to reduin when ACVCOM taggle. Two does not be an analyzed to reduin the second taggle. The second taggle. The second taggle is the second taggle. The second taggle is the second taggle is the second taggle. The second taggle is the second taggle is the second taggle. The second taggle is the second taggle is the second taggle. The second taggle is the second taggle is the second taggle is the second taggle is the second taggle. The second taggle is the seco													
0 0 2B 0 0 1 0 1 0 1 1 Write Register for VCOM This command is used to redu	0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during
Control when ACVCOM toggle Two d													operation.
Control when ACVCOM toggle Two d	0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
	0	1		0	0	0		0	1	0	0	Control	when ACVCOM toggle. Two data bytes
0 1 0 1 0 0 1		12				10.7				1.000	-		D04h and D63h should be set for this command.

		d Ta			_							1-	-			
/ W #	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descript				
0	0 1	2C	0 A7	0 A ₆	1 A5	0 A4	1 A ₃	1 A2	0 A1	0 A ₀	Write VCOM register		OM regist 00h [POR]		ICU interfac	
												A[7:0]	VCOM	A[7:0]	VCOM	
												08h	-0.2	44h	-1.7	
												0Ch	-0.3	48h	-1.8	
												10h	-0.4	4Ch	-1.9	
												14h	-0.5	50h	-2	
												18h	-0.6	54h	-2.1	
												1Ch	-0.7	58h	-2.2	
												20h	-0.8	5Ch	-2.3	
												24h	-0.9	60h	-2.4	
												28h	-1	64h	-2.5	
												2Ch	-1.1	68h	-2.6	
												30h	-1.2	6Ch	-2.7	
												34h	-1.3	70h	-2.8	
												38h	-1.4	74h	-2.9	
												3Ch	-1.5	78h	-3	
												40h	-1.6	Other	NA	
)	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	egister for	Display (Option:	
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Display Option	A[7:0]: VCOM OTP Selection (Command 0x37, Byte A)				
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo						
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co			und oxor,	Dytory		
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do			VCOM Re			
1	1		E ₇	E ₆	E ₅	E4	E ₃	E ₂	E1	E ₀		(Comm	and 0x2C)			
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		C[7:0]~	G[7:0]: Dis			
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go			and 0x37,			
1	1	-	H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀		[5 bytes		2,10 2 10	,	
1	1		17	I 6	15	4	13	I ₂	I ₁	lo		1.117 01				
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo			K[7:0]: Wa and 0x37,			
<u>.</u> 1	1		K7	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	Ko		[4 bytes		Byle G ld	Dyte J)	
<u>.</u>			N/	116	115	114	13	N 2	IN1	NO		[10]	-1			
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10	Byte Use	r ID store	d in OTP:	
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A		A[7:0]]~.	J[7:0]: Use		Byte A and	
1	1		B ₇	B6	B5	B ₄	B ₃	B ₂	B ₁	Bo			[10 bytes]			
1	1		C ₇		C ₅	C ₄	C ₃	C ₂	C ₁	Co						
1	1		D7	D ₆	D5	D4	D ₃	D ₂	D ₁	Do						
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E1	Eo						
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	E ₁	Fo						
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go						
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho						
1	1		17	I 6	15	14	13	l ₂	11	lo						
-	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo	-					
1			J7	J 6	J 5	J 4	J 3	J 2	J1	J 0						

0	0	2F	0	0	1	0	1	1	1	1	S	tatus Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	A ₅	A4	0	0	A ₁	Ao			A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
0	0	30	0	0	1	1	0	0	C		0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	31	0	0	1	1	0	0	C		1	Load WS OTP	Load OTP of Waveform Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	32	0	0	1	1	0	0	1		0	Write LUT register	Write LUT register from MCU interface
0	1		A ₇	A	A ₅		A ₃		-		40		[153 bytes], which contains the content of
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	-	В	1 E	30		VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR[n] and XON[nXY]
0	1		:	:	:	:	:	:	:		18		Refer to Session 6.7 WAVEFORM
0	1				•	•	•		·				SETTING
0	0	34	0	0	1	1	0	1	C		0	CRC calculation	CRC calculation command For details, please refer to SSD1680 application note. BUSY pad will output high during operation.
0	0	25	0	0	4	1	0	4			1	CRC Status Read	CRC Status Read
0	1	35	0 A ₁₅	0 A ₁₄	1 A ₁₃	1 A ₁₂	0 A ₁₁	1 A10			1 A8	UNU Status Read	A[15:0] is the CRC read out value
1	1		A15	A14	A13 A5	-	A ₁₁ A ₃	-		-	-18 -10		
18.	1		- N	10	1	74	173	12	A	1	NU		

0	(D	36	0	0	1	1	0	1	1	0	Program OTP selectio	OTP Selection Control [R37h and R38h] The command required CLKEN=1.
													Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0		0	37	0	0	1	1	0	1	1	1	Write Register for Disp	blay Write Register for Display Option
0		1	57	A7	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0		1	-	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		0: Default [POR]
0	2	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁		-	1: Spare
0		1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do		B[7:0] Display Mode for WS[7:0]
0		1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E1	Eo		C[7:0] Display Mode for WS[15:8]
0		1		0	F ₆	0	0	F ₃	F ₂	F ₁	Fo		D[7:0] Display Mode for WS[23:16] E[7:0] Display Mode for WS[31:24]
0		1		G7	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		F[3:0 Display Mode for WS[35:32]
0		1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H₀]	0: Display Mode 1
0		1		I 7	I 6	I 5	4	l ₃	I 2	l ₁	lo		1: Display Mode 2
0		1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo		F[6]: PingPong for Display Mode 2
													0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable
													1. TAWT Ing-I ong chable
													G[7:0]~J[7:0] module ID /waveform version.
													Remarks:
													1) A[7:0]~J[7:0] can be stored in OTP
													2) RAM Ping-Pong function is not support
													for Display Mode 1
0	0	38) 1				1			ite Register for User ID	Write Register for User ID
0	1		A		-	-			-		_		A[7:0]]~J[7:0]: UserID [10 bytes]
0	1	-	B	2 0.0	0.00	-		-	-		_		Remarks: A[7:0]~J[7:0] can be stored in
0	1	-	D	-						-	-		OTP
0	1	+	E			_	-	-			_		
0	1	+	F			5 F	-				_		
0	1		G								-		
0	1		Н	7 H	16 H	ls H	4 H	3 H	2 H	1 Ho			
0	1		17		6 				100		_		
0	1		J	7 J	6 J	5 J	4 J	3 J	2 J1	Jo			
0	0	39	0 0	1) 1	1	1	0	0	1	01	P program mode	OTP program mode
0	1	38	0					-	-	-	-	r program mode	A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage
													Remark: User is required to EXACTLY follow the reference code sequences

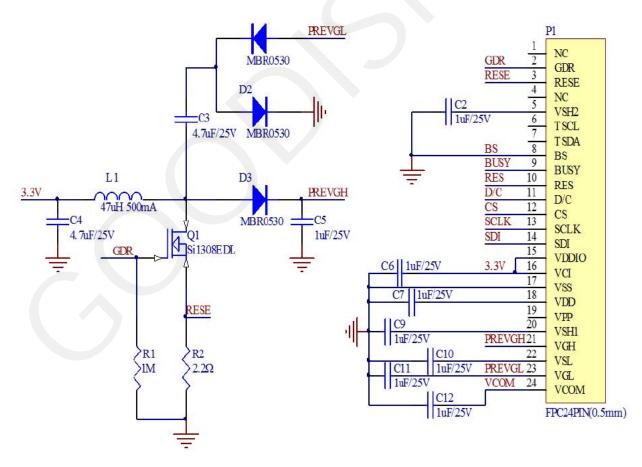
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control		
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀			[POR], set VBD as HIZ.
													ect VBD option
												A[7:6]	Select VBD as
												00	GS Transition,
													Defined in A[2] and
													A[1:0]
												01	Fix Level,
													Defined in A[5:4]
												10	VCOM
												11[POR]	HiZ
												A [5:4] Fix L	evel Setting for VBD
												A[5:4]	VBD level
												00	VSS
												01	VSH1
												10	VSL
												11	VSL VSH2
													VOIIZ
												A[2] GS Trai	nsition control
													S Transition control
													ollow LUT
												((Dutput VCOM @ RED)
												1 F	ollow LUT
													ransition setting for VBD
												A[1:0]	VBD Transition
												00	LUTO
												01	LUT1
												10	LUT2
												11	LUT3
-			-			4						1	
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for Ll	
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0]= 02h 22h Norr	
													ce output level keep ious output before power off
		-										picv	
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM (Option
0	1		0	0	0	0	0	0	0	A		A[0]= 0 [POF	
0			U	0	U	0	0	0	0	AO		0 : Read RA	M corresponding to RAM0x24
													M corresponding to RAM0x26
													1230 - 1225
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the	start/end positions of the
-	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A	Start / End position	window add	ress in the X direction by an
	-		0	0	B ₅	B4	B ₃	B ₂	B ₁	Bo		address unit	
0	1				05	04	03	02	01	00			
0	1				111					1		and the second second second second	
-	1				5.1.1							A[5:0]: XSA[5:0], XStart, POR = 00h 5:0], XEnd, POR = 15h

0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the start/end positions of the
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Start / End position	window address in the Y direction by an
0	1		0	0	0	0	0	0	0	A ₈		address unit for RAM
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		A[8:0]: YSA[8:0], YStart, POR = 000h
0	1		0	0	0	0	0	0	0	Bs		

0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM for	Auto Write		M for Poo	ular Datte	arn
0	1	40	A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	A	Regular Pattern	Auto Write $A[7:0] = 0$		in for Reg		2111
Ū				10		7 44	Ū	12	7.1	10		A[7]: The A[6:4]: Ste Step of all to Gate	ep Height,	POR= 00	0	ling
												A[6:4]	Height	A[6:4]	Height	1
												000	8	100	128	
												001	16	101	256	
												010	32	110	296	8
												011	64	111	NA	2
												A[2:0]: Ste Step of all to Source	ep Width, ter RAM ir	POR= 000)	ling
												A[2:0]	Width	A[2:0]	Width	
												000	8	100	128	1
												001	16	101	176	1
												010	32	110	NA	
												011	64	111	NA	
		2	6					2	6			BUSY pactors operation.		ut high du	ring	
0	0	47	0	4	0	0	0	4	4	4		A			Jan Datta	
0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for Regular Pattern	Auto Write $A[7:0] = 0$		vi for Regi	ular Patte	rn
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	Ao		A[7]: The A[6:4]: Ste	1st step v			
												Step of all to Gate				ling
												A[6:4]	Height	A[6:4]	Height	
												000	8	100	128	
												001	16	101	256	
												010	32	110	296	
												011 A[2:0]: Ste				1
												Step of all to Source				ling 7
												A[2:0]	Width	A[2:0]	Width	-
												000	8	100	128	-
												001	16	101	176	8
												010	32	110	NA	- 2
												011	64	111	NA	
												During op high.	eration, B	USY pad	will output	t
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initi	al settings	for the R	AM X	
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	counter	address ir A[5:0]: 00	n the addr			
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initi				
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	counter	address in			er (AC)	
0	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 00	on [POR].	8		
0	0	7F	0	1	1	1	1	1	1	1	NOP	This comr does not l module. However Frame Me Command	have any e it can be u emory Wri	effect on the	he display minate	

8.Optical Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

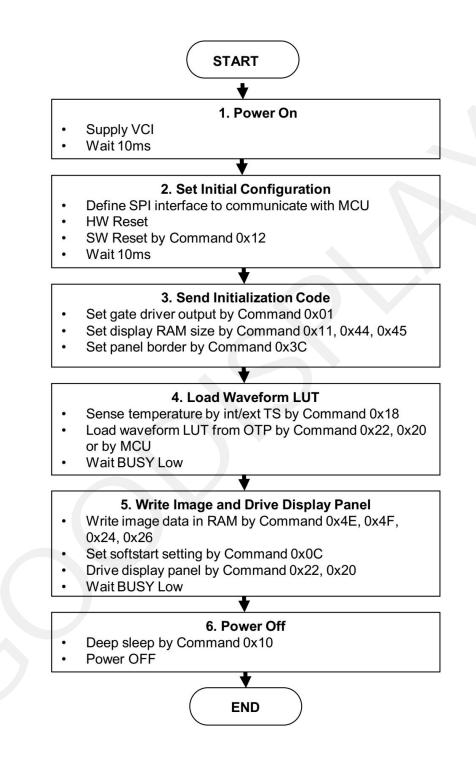

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	8-1
CR	Contrast Ratio	Indoor	8:1		-		8-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 10 °C		7	-	sec	
Life		Topr		1000000times or 5years			

Notes: 8-1. Luminance meter: Eye-One Pro Spectrophotometer.

8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

8-3. WS: White state, DS: Dark state

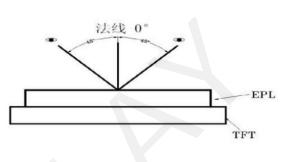
9. Typical Application Circuit with SPI Interface



10.Reliability test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=60° C, RH=35%, 240h Test in white pattern
3	High-Temperature Operation	T=10°C, 240h
4	Low-Temperature Operation	-25°C, 240h
5	High Temperature, High Humidity Storage	T=50° C, RH=90%, 240h Test in white pattern
6	Temperature Cycle	1 cycle:[-25° C 30min]→[+60 ° C 30 min] : 50 cycles Test in white pattern
7	UV exposure Resistance	765W/m ² for 168hrs,40 °C Test in white pattern
8	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

11. Typical Operating Sequence


11.1 Typical Operating Sequence

12. Inspection method and condition

12. 1 Inspection condition

Item	Condition
Illuminance	800~1500 lux
Temperature	22°C ± 3°C
Humidity	55±10 %RH
Distance	≥30cm
Angle	Vertical fore and aft 45
Inspection method	By eyes

12.2 Zone definition

- A Zone: Active area
- B Zone: Border zone
- C Zone: From B zone edge to panel edge

12. 3 General inspection standards for products

12.3.1 Appearance inspection standard

Inspection item	Fi	gure	A zone inspection standard	B/C zone	Inspection method	MAJ/ MIN
Spot defec such as do foreign matter, a bubble, a dent etc. defects	r L -++	The distance between the two spots should not be less than 10mm	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Foreign matter D≤1mm Pass	Check by eyes Film gauge	MIN

Ins	pection item	F	igure	A zone inspection standard	B/C zone	Inspection method	MA J/ MI N
Line defects	Line defects such as scratch, hair etc.	L-Length, W-Width, (W/L) < 1/4 Judged by line, $(W/L) \ge 1/4$ Judged by dot	The distance between the two lines should not be less than 5mm	7.5"-13.3"Module (Not include 7.5") : L>10mm,N=0 W>0.8mm, N=0 5mm≤L≤10mm, 0.5mm≤W≤0.8mm N≤2 L≤5mm, W≤0.5mm Ignore 4.2"-7.5"Module (Not include 4.2") : L>8mm,N=0 W>0.2mm, N=0 2mm≤L≤8mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore Module below 4.2": L>5mm,N=0 W>0.2mm, N=0 2mm≤L≤5mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore	Ignore	Check by eyes Film gauge	MIN

Inspect	ion item	Figure	Inspection standard	Inspection method	MA J/ MIN
Panel chipping and crack defects	TFT panel chipping	X the length, Y the width, Z the chipping height, T the thickness of the panel	Chipping at the edge: Module over 7.5" (Include 7.5") : $X \le 6mm, Y \le 1mm$ $Z \le T$ N=3 Allowed Module below 7.5"(Not include 7.5"): $X \le 3mm, Y \le 1mm$ $Z \le T$ N=3 Allowed Chipping on the corner: IC sideX \le 2mm Y \le 2mm, Non-IC sideX $\le 1mm$ Y $\le 1mm$. Allowed Note: Chipping should not damage the edge wiring. If it does not affect the display, allowed	Check by eyes, Film gauge	MIN
	Crack	玻璃裂紋	Crack at any zone of glass, Not allowed	Check by eyes Film gauge	MIN
	Burr edge	+	No exceed the positive and negative deviation of the outline dimensions X+Y≤0.2mm Allowed	Calliper	MIN
	Curl of panel	H Curl height	Curl height H≤Total panel length 1% Allowed	Check by eyes	MIN

Inspec	tion item	Figure	Inspection standard	Inspecti on method	MAJ / MIN
PS defect	Water proof film		 Waterproof film damage, wrinkled, open edge, not allowed Exceeding the edge of module(according to the lamination drawing) Not allowed Edge warped exceeds height of technical file, not allowed 	Check by eyes	MIN
RTV defect	Adhesive effect		Adhesive height exceeds the display surface, not allowed 1.Overflow, exceeds the panel side edge, affecting the size, not allowed 2.No adhesive at panel edge≤1mm, mo exposure of wiring, allowed 3. No adhesive at edge and corner1*1mm, no exposure of wiring, allowed Protection adhesive, coverage width within W≤1.5mm, no break of adhesive, allowed	Check by eyes	MIN
	Adhesive re-fill		Dispensing is uniform, without obvious concave and breaking, bubbling and swell, not higher than the upper surface of the PS, and the diameter of the adhesive re-filling is not more than 8mm, allowed	Check by eyes	MIN
EC defect	Adhesive bubble	TPT边缘 防水胶涂布区 封边胶边缘 防水胶涂布区 。 。 Border外缘(PPL边缘)	 Effective edge sealing area of hot melt products ≥1/2 edge sealing area; Bubble a+b≥1/2 effective width, N≤3, spacing≥5mm, allowed No exposure of wiring, allowed 	Check by eyes	MIN

Inspection item		Figure	Inspection standard	Inspection method	MAJ/ MIN
EC defect	Adhesive effect		 Overflow, exceeds the panel side edge, affecting the size, not allowed No adhesive at panel edge≤1mm, mo exposure of wiring, allowed No adhesive at edge and corner 1*1mm, no exposure of wiring, allowed Adhesive height exceeds the display surface, not allowed 	Visual, caliper	MIN
Silver dot adhesive defect	Silver dot adhesive		 Single silver dot dispensing amount ≥1mm, allowed One of the double silver dot dispensing amount is ≥1mm and the other has adhesive (no reference to 1mm) Allowed 	Visual	MIN
			Silver dot dispensing residue on the panel ≤0.2mm, allowed	Film gauge	MIN
FPC defect	FPC wiring		FPC, TCP damage / gold finger peroxidation, adhesive residue, not allowed	Visual	MIJ
	FPC golden finger		The height of burr edge of TCP punching surface ≧ 0.4mm, not allowed	Caliper	MIN
	FPC damage/cr ease		Damage and breaking, not allowed Crease does not affect the electrical performance display, allowed	Check by eyes	MIN

Inspection item		Figure	Inspection standard	Inspection method	MAJ/ MIN
Protective film defect	Protective film	Scratch and crease on the surface but no affect to protection function, allowed		Check by eyes	MIN
		Adhesive at edge L≤5mm, W≤0.5mm, N=	2, no entering into viewing area	Check by eyes	MIN
Stain defect	Stain	If stain can be normally wiped clean by > 99% alcohol, allowed		Visual	MIN
Pull tab defect	Pull tab	The position and direction meet the document requirements, and ensure that the protective film can be pulled off.		Check by eyes/ Manual pulling	MIN
Shading tape defect	Shading tape	Tilt≤10°, flat without warping, completely covering the IC.		Check by eyes/ Film gauge	MIN
Stiffener	Stiffener	Flat without warping, Exceeding the left and right edges of the FPC is not allowed. Left and right can be less than 0.5mm from FPC edge		Check by eyes	MIN
Label	Label/ Spraying code	The content meets the requirements of the we requirements of the technical documents.	ork sheet. The attaching position meets the	Check by eyes	MIN

13. Matched Development Kit

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh black-white Epaper Display, three-color (black, white and red/Yellow) E-paper Display and four-color(black, white, red and yellow) Good Display 's E-pa per Display. And it is also added the functions of USB serial port, FLASH c hip, font chip, current detection ect.

Development Kit consists of the development board and the pinboard. Supported development platforms include STM32, ESP32, ESP8266, Arduino UNO, etc. More details, please click to the following links:

STM32	https://www.good-display.com/product/219.html
ESP32	https://www.good-display.com/product/338.html
ESP8266	https://www.good-display.com/product/220.html
Arduino UNO	https://www.good-display.com/product/222.html

14. Handling, Safety and Environmental Requirements

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care.

Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data about status				
Data sheet status				
Product specification	The data sheet contains final product specifications.			
Limiting values				
Limiting values given are in accordance with the Absolute Maximum Rating System				
(IEC 134).				
Stress above one or more of the limiting values may cause permanent damage to				
the device.				
These are stress ratings only and operation of the device at these or any other				
conditions above those given in the Characteristics sections of the specification is				
not implied. Exposure to limiting values for extended periods may affect device				
reliability.				
Application information				

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification

RoHS

15.Packaging

PACKLING ORDER:

1) Putting 35 pcs Modules 2) Putting 12 pcs PET trays 3) the tray together with together with 1 empty tray on the on each PET tray.And adhesive tape cover a dedicated EPE film. top of PET tray. Insert in the ESD bag, add desiccant in the ESD bag. ESD bag 4) Putting into one outcarton 5) Packing finished

Note:35 pcs in a tray, 12 trays in a inner carton, 1 inner cartons in a out carton, so 35x12x1=420pcs/Outcarton Dimension (Out carton): 394*344*138mm

16. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL /EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.
- (7) For more precautions, please click on the link: https://www.good-display.com/news/80.html