

28.0 inch E-paper Display Series GDEP280T01

Dalian Good Display Co., Ltd.

Product Specifications

Customer	Standard
Description	28.0" E-PAPER DISPLAY
Model Name	GDEP280T01
Date	2023/01/06
Revision	1.0

D	esign Engineerin	g
Approval	Check	Design
宝刘 印玉	燕修 印凤	之吴印良

Zhongnan Building, No.18, Zhonghua West ST, Ganjingzi DST, Dalian, CHINA

Tel: +86-411-84619565

Email: info@good-display.com

Website: www.good-display.com

CONTENTS

1.G	eneral Description	-4
2.Fe	eatures	-4
3. M	echanical Specifications	4
4. M	echanical Drawing of EPD module	5
5.Ir	put /Output Terminals	-6
6. El	ectrical Characteristics	9
7. Po	ower on Sequence	16
8.0	ptical Characteristics	17
9. H	andling, Safety and Environment Requirements and Remark	18
10.	Reliability test	-19
11.	Block Diagram	-20
12.	Packing	-21
13.	Precautions	-23

1. Overview

GDEP280T01 is a reflective electrophoretic technology display module based on active matrix TFT substrate. It has 28" active area with 3840 x 1080 pixels and 32:9 aspect ratio. The display is capable to display images at 16 Gray levels (1 to 4 bits) depending on the display controller and the associated waveform file it used.

2.Features

- High contrast electrophoretic imaging film
- 3840 x 1080 display
- Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Landscape portrait modes
- Ultra wide viewing angle

Parameter	Specifications	Unit	Remark
Screen Size	28″	Inch	
Display Resolution	3840 (H)×1080(V)	Pixel	32:9
Active Area	683.52(H)×190.24(V)	mm	143dpi
Pixel Pitch	0.178	mm	
Pixel Configuration	Square		
Outline Dimension	698.6(H)*209.3(V)*0.953(D)	mm	
Module Weight	TBD	g	
Number of Gray	16 Gray Level		
Display operating mode	Reflective mode		
Glass Substrate	0.5mm	mm	
Surface Treatment	Anti-glare		
Driver IC	Source COF: Himax HX-5271 Gate COF: Solomon SPD1652		

3. Mechanical Specifications

4. Mechanical Drawing of EPD module

5. Input /Output Terminals

5.1 Connector type

Item	Pin numbers	Pitch (mm)	Connector	Note
CN1	51	0.5	P-TWO 187059-51221-1	LVDS Type
CN2	51	0.5	P-TWO 187059-51221-1	LVDS Type

5.2 Pin Assignment Connector CN1

Pin #	Signal	Description	Remark
1	FPL_VCOM	Common Voltage.	
2	FPL_VCOM	Common Voltage.	
3	FPL_VCOM	Common Voltage.	
4	NC	NO Connection	
5	TFT_VCOM	Common Voltage.	
6	TFT_VCOM	Common Voltage.	
7	NC	NO Connection	
8	BORDER	Border connection	
9	NC	NO Connection	
10	VGH	Positive power supply gate driver.	
11	VGH	Positive power supply gate driver.	
12	NC	NO Connection	
13	VP3	Positive power supply source driver.	
14	VP3	Positive power supply source driver.	
15	VP3	Positive power supply source driver.	
16	NC	NO Connection	
17	VP2	Positive power supply source driver.	
18	VP2	Positive power supply source driver.	
19	VP2	Positive power supply source driver.	
20	NC	NO Connection	
21	VP1	Positive power supply source driver.	
22	VPI	Positive power supply source driver.	
23	VPI	Positive power supply source driver.	
24	NC	NO Connection	
25	VDD	Logic power.	
20	VDD	Logic power.	
27	INC VSS	NO Connection	
20	VSS	Ground	
29	V 35	NO Connection	
30	VN1	Negative power supply source driver	
32	VN1	Negative power supply source driver	
33	VN1	Negative power supply source driver	
34	NC	NO Connection	
35	VN2	Negative power supply source driver.	
36	VN2	Negative power supply source driver.	
37	VN2	Negative power supply source driver.	
38	NC	NO Connection	
39	VN3	Negative power supply source driver.	
40	VN3	Negative power supply source driver.	
41	VN3	Negative power supply source driver.	
42	NC	NO Connection	
43	VGL	Negative power supply gate driver.	
44	VGL	Negative power supply gate driver.	
45	NC	NO Connection	
46	NC	NO Connection	

🗗 GooDisplay

47	NC	NO Connection	
48	NC	NO Connection	
49	STBYB	mini-LVDS enable.	
50	XON	XON signal gate driver	
51	MODE	Output enable gate driver	

Connector CN2

Pin #	Signal		Remark				
1	DSEL		Data Input select				
2	LEH		Latch enable source driver				
3	OEH		Outputs enabled when OE is logic "H",				
	0211	Ou	Outputs forced to GND when OE is logic "L".				
	LID		Shift direction control p	pin gate driver			
4	UD		P = H: Data shift direction	from G1 to G800.			
			UD = L: Data shift direction from G800 to G1.				
5	SHR	SHR =F	J. Data inputs read seque	ntially from \$800 to \$1			
	SIIIC	SHR =I	: Data inputs read sequer	ntially from S1 to S800.			
			Start pulse gate	driver			
		UD	Start pulse input	Start pulse output			
6	SPV2	Н	SPV1	SPV2			
		L	SPV2	SPV1			
			Start pulse gate	driver			
		UD	Start pulse input	Start pulse output			
7	SPV1	Н	SPV1	SPV2			
		L	SPV2	SPV1			
			Start pulse source	e driver			
		SHR	Start pulse input	Start pulse output			
8	SPH2	Н	SPH2	SPH1			
		L	SPH1	SPH2			
			Start pulse source	e driver			
		SHR	Start pulse input	Start pulse output			
9	SPH1	Н	SPH2	SPH1			
		L	SPH1	SPH2			
10	VSS		Ground				
11	CKV		Clock gate dr	river			
12	VSS		Ground				
13	LV11N		Data signal sourc	e driver			
14	LV11P		Data signal sourc	e driver			
15	VSS		Ground				
16	LV10N		Data signal sourc	e driver			
17	LV10P		Data signal sourc	e driver			
18	VSS		Ground				
19	LV9N		Data signal sourc	e driver			
20	LV9P		Data signal sourc	e driver			
21	VSS		Ground				
22	LV8N		Data signal source driver				
23	LV8P		Data signal source driver				
24	UV7N D15	+	Data signal source driver				
25			Data signal source	be driver			
20	VSS		Ground		+		
28	LV6N D13		Data signal source	e driver	-		
29	LV6P D12		Data signal source	e driver			
30	VSS		Ground		1		
		J	Ground				

31	CLKN_GLOSTL	Data signal source driver	
32	CLKP_CKH	Data signal source driver	
33	VSS	Ground	
34	LV5N_D11	Data signal source driver	
35	LV5P_D10	Data signal source driver	
36	VSS	Ground	
37	LV4N_D9	Data signal source driver	
38	LV4P_D8	Data signal source driver	
39	VSS	Ground	
40	LV3N_D7	Data signal source driver	
41	LV3P_D6	Data signal source driver	
42	VSS	Ground	
43	LV2N_D5	Data signal source driver	
44	LV2P_D4	Data signal source driver	
45	VSS	Ground	
46	LV1N_D3	Data signal source driver	
47	LV1P_D2	Data signal source driver	
48	VSS	Ground	
49	LV0N_D1	Data signal source driver	
50	LV0P_D0	Data signal source driver	
51	VSS	Ground	

5.3 Panel Scan direction

6. Electrical Characteristics 6.1 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Remark
Logic Supply Voltage	VDD	-0.3 to +5.0	V	
Positive Supply Voltage	VP3	-0.3 to VN3+50	V	
	VP2	-0.3 to VP3	V	
	VP1	-0.3 to VP3	V	
Negative Supply Voltage	VN1	VN3 to + 0.3	V	
	VN2	VN3 to + 0.3	V	
	VN3	-25 to + 0.3	V	
Supply Voltage	VGH	-0.3 to +55	V	
Supply Voltage	VGL	-32 to +0.3	V	
Supply Range	VGH-VGL	-0.3 to +55	V	
Operating Temp. Range	TOTR	-15 to +65	°C	
Storage Temperature	TSTG	-25 to +70	°C	

6.2 Panel DC Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Signal ground	VSS			0		V
T	VDD		2.7	3.3	3.6	V
Logic voltage supply	IDD	VDD=3.3V			TBD	mA
Coto Nogotivo gunnly	VGL		-19	-20	-21	V
Gate Negative supply	IGL	VGL=-20V			TBD	mA
Cata Dagitiya gyanly	VGH		26	27	28	V
Gate Positive supply	IGH	VGH=27V			TBD	mA
	VN1		-16	-15	-14	V
Source negative supply	IN1				TBD	mA
Source Negative supply	VN2		-13	-12	-11	V
	IN2				TBD	mA
	VN3		-21	-20	-19	V
Source Negative suppry	IN3				TBD	mA
Source Desitive supply	VP1		14	15	16	V
Source Positive supply	IP1				TBD	mA
Source Desitive sumply	VP2		11	12	13	V
Source Positive supply	IP2				TBD	mA
Course Desitive surgly	VP3		19	20	21	V
Source Positive supply	IP3				TBD	mA
Border supply	-		-	-	-	V
Asymmetry source	Vasm	VP1+VN1	TBD		TBD	mV
Common voltago	Vcom_TFT		-3.5	Adjusted	-0.3	V
Common vonage	Icom_TFT			TBD	TBD	mA

	Vcom_FPL		-3.5	Adjusted	-0.3	V
	Icom_FPL			TBD	TBD	mA
Maximum Power panel	Pmax				TBD	mW
Typical power panel	Ptyp			TBD		mW
Standby power panel	Pstby				TBD	mW
Maximum Currents (Note 5)	IP1	VP1 = 15V	-		TBD	mA
	IN1	VN1 = -15V	-		TBD	mA
	IGH	VGH = 27V	-		TBD	mA
	IGL	VGL = -20V	-		TBD	mA
	ICOM		-		TBD	mA

Note:

1. The maximum average Currents for power consumption are measured using 75 Hz waveform with following pattern transition: from black and white single checker pixel pattern to inversed black and white single checker pixel pattern. (Note 6-1)

2. The Typical average current for power consumption is measured using 75 Hz waveform with following pattern transition: from horizontal 4 gray scale pattern to vertical 4 gray scale pattern.(Note 6-2)

3. The standby power is the consumed power when the panel controller is in standby mode.

4. The Maximum Currents are measured using 75 Hz waveform with following pattern transition: from black and white single checker pixel pattern to inversed black and white single checker pixel pattern. (Note 6-1)

- It is performed with decoupling capacitors on each power rail as below table (Note 6-3).

- The minimum value in table of Maximum current is produced by charging mechanism between decoupling capacitors.

5. The listed electrical/optical characteristics are only guaranteed under the controller and waveform provided by NEWFACE.

6. Vcom is recommended to be set in the range of assigned value ± 0.1 V.

7. Use of measuring instruments: Oscilloscope (Model: Tektronix MDO3024).

8. The maximum current is for reference only.

ப் GooDisplay

Note6-1

The maximum average current and Maximum Currents

Note6-2

The typical power consumption

Note6-3

The decoupling capacitors on each power rail for Max. Currents

Power rail	Capacitors suggested (uF / Tolerance)
IDD	2.2uF x 14pcs / ±10%
IP1	2.2uF x 12pcs / ±10%
IP2	2.2uF x 12pcs / ±10%
IP3	2.2uF x 12pcs / ±10%
IN1	2.2uF x 12pcs / ±10%
IN2	2.2uF x 12pcs / ±10%
IN3	2.2uF x 12pcs / ±10%
IGH	2.2uF x 2pcs / ±10%
IGL	2.2uF x 3pcs / ±10%
ICOM	No Capacitor

6.3 Refresh Rate

The module is applied at a maximum screen refresh rate of 75Hz.

	Min	Max		
Refresh Rate	-	75 Hz		

6.4. Panel AC characteristics

VDD=2.7V to 3.6V, unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max.	Unit	
mini-LVDS differential voltage	V _{ID}	300	-	-	mV	
mini-LVDS common mode input voltage range	VI	0.4	1.0	VDD-1.4	V	
Source Clock frequency	F _{CLK}	-	-	150	MHz	
Source Clock duty	t _{DUTY}	45	-	55	%	
Source Clock setup time	t _{SETUP1}	1.1		-	ns	
Source Clock hold time	t _{HOLD1}	1.1	-	1	ns	
Rise time	t _{RISE}	œ	-	0.15	Unit interval	
Fall time	t _{FALL}	8-1	-	0.15	Unit interval	
LE rising to reset input time	t _{LE-RESET_HIGH}	200		-	ns	
LE falling to reset input time	t _{LE-RESET_LOW}	200	-	-	ns	
Start pulse delay time	t _{PLH1}	-	-	4	CLK	
Start pulse delay time	t _{PHL1}	-	-	4	CLK	
Reset high period	t _{RESETH}	3	-	-	CLK	
Receiver off to LE timing	t _{REC-OFF}	40		-	CLK	
LE width	t _{LE}	300	2=1	-	ns	
Reset low to LE rising time	t _{RESET-LE}	0	a- 1	1. 	ns	
Gate clock frequency	f _{CLK}	11 <u>1</u> 1	-	200	kHz	
Gate clock pulse high period	t _{CLKH}	500	-	-	ns	
Gate clock pulse low period	t _{CLKL}	500	-	() 	ns	
Gate clock rise time	t _{IR_CLK}	8 - 1	-	100	ns	
Gate clock fall time	t _{IF_CLK}	s - 1	s=1	100	ns	
Gate Start pulse setup time	$t_{\rm SU}$	100	-	$t_{\rm CLKH}$ -100	ns	
Gate Start pulse hold time	t _{HD}	100	-	$t_{\rm CLKL}$ -100	ns	
Gate Start pulse rise time	t _{IR_STV}	-	-	100	ns	
Gate Start pulse fall time	t _{IF_STV}	8 - 1	-	100	ns	
Gate STV output delay from CLK	t _{OD_STV}			500	ns	
Output delay time from CLK	t _{D_OUT}	8-1	°= (2	us	
Output rise time, output pins	t _{R_OUT}	s - 1	-	1	us	
Output fall time, output pins	t _{F_OUT}	11 <u>11</u>	11 <u>-</u>	1	us	
XONL/R pulse width	t _{WXON}	10	-	-	us	
Output delay time from XON	t _{DXON_OUT}	n 1	-	20	us	

Note : First gate line on timing

After 5CLK, Gate OUT1 is on.

6.5 Controllers Timing

The timing mode is depicted on Figure 6.1 and Figure 6.2 and it refers to timing of Source Driver Output Enable (SDOE) and Gate Driver Clock (GDCK). Note, the controller timing in the mode LGON follows GDCK timing.

Figure 6.1 Line Timing in Mode 3

Note: LCK is an internal signal and it is shown for reference only.

Figure 6.2 Frame Timing in Mode 3

Note 1: For Free scale SoC GDOE Low pulse represent FSL and GDSP pulses with the first period of FBL

Note 2: SDCLK = XCL LV[0:11]P/N = LV0P~LV11N SDCE_L = XSTL GDCK = CKV GDSP = SPV GDOE = Mode1 SDOE = XOE

7. Power on Sequence

Power Rails must be sequenced in the following order :

1. VSS VDD VN3 VN1(VN2) VP1(VP2) VP3 VCOM 2. VSS VDD VGL VGH (Gate driver) POWER ON

	Min	Max	Remark
Tsd	30us	-	
Tde	100us	-	
Тер	1000us	-	
Tpv	100us	-	
Tvd	100us	-	
Ten	0us	-	
Tng	1000us	-	
Tgv	100us	-	

POWER OFF

	Min	Max	Remark
Tdv	100µs	-	-
Tvg	0µs	-	-
Tgp	0µs	-	-
Tpn	0µs	-	-
Tne	0µs	-	-
Ted	0.5s	-	Discharged point @ -7.4 Volt

8. Optical Characteristics 8.1 Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

						T =	= 25°C
Symbol	Parameter	Conditions	Min	Тур.	Max	Unit	Note
R	Reflectance	White	30	40	-	%	Note 8-1
Gn	Nth Grey Level	-	-	DS+(WS-DS)×n/(m-1)	-	L*	-
CR	Contrast Ratio	-	10	12	-		

WS: White state , DS: Dark state, Gray state from Dark to White :DS、G1、G2...、Gn...、Gm-2、WS m:4、8、16 when 2、3、4 bits mode

8-1. Luminance meter: Eye –One Pro Spectrophotometer

8.2 Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (RI) and the reflectance a dark area (Rd): CR = RI/Rd.

8.3 Reflection Ratio

The reflection ratio is expressed as:

R = Reflectance Factorwhite board x (Lcenter / Lwhite board)

Lcenter is the luminance measured at center in a white area (R=G=B=1). Lwhite board is the luminance of astandard white board. Both are measured with equivalent illumination source. The viewing angle shallbe no more than 2 degrees.

9. Handling, Safety and Environmental Requirements

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care.

Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status					
Product specification	The data sheet contains final product specifications.				
	Limiting values				
Limiting values given a	are in accordance with the Absolute Maximum Rating System				
(IEC 134).					
Stress above one or m	Stress above one or more of the limiting values may cause permanent damage to				
the device.					
These are stress ratings only and operation of the device at these or any other					
conditions above those given in the Characteristics sections of the specification is					
not implied. Exposure to limiting values for extended periods may affect device					
reliability.					
Application information					

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification

RoHS

10. Reliability Test

	TEST	CONDITION	METHOD	REMARK
1	High-Temperature Operation	$T = +65^{\circ}C, RH = 30\%$ for 240 hrs	IEC 60 068-2-2Bp	
2	Low-Temperature Operation	$T = -15^{\circ}C$ for 240 hrs	IEC 60 068-2-2Ab	
3	High-Temperature Storage	T = +70°C, RH=23% for 240 hrs Test in white pattern	IEC 60 068-2-2Bp	
4	Low-Temperature Storage	T = -25°C for 240 hrs Test in white pattern	IEC 60 068-2-1Ab	
5	High-Temperature, High-Humidity Operation	T = +40°C, RH = 90% for 168 hrs	IEC 60 068-2-3CA	
6	Temperature Cycle	-25°C →+70°C, 100 Cycles 30min 30min Test in white pattern	IEC 60 068-2-14	
7	Solar radiation test	765 W/m2,168hrs,40°C	IEC60 068-2-5Sa	
8	Package Vibration	Random Wave (1.5Grms) Frequency: 10~200Hz Direction: X,Y,Z Duration: 30mins each direction	Full packed for shipment	
9	Package Drop Impact	Drop from height of 15.2 cm on concrete surface. Drop sequence: 6 flats	Full packed for shipment	
10	Electrostatic Effect (non-operating)	(Machine model)+/- 250V 0Ω, 200pF	IEC 62179, IEC 62180	
11	Electrostatic Effect (non-operating)	(ESD gun) Air 15k, Contact 8k	IEC 62179, IEC 62180	

Actual EMC level to be measured on customer application

Note: The protective filmmust be removed before temperature test.

< Criteria >

In the standard conditions, there is not display function NG issue occurred. (Including: line defect, noimage). All the cosmetic specification is judged before the reliability stress.

11. Block Diagram

🕒 GooDisplay

12. Packing

12.1 packing drawing

13. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL / EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.