

7.3 inch E-paper Display Series

Dalian Good Display Co., Ltd.

Product Specifications

Customer	Standard
Description	7.3" E-PAPER DISPLAY
Model Name	GDEP073E01
Date	2024/02/06
Revision	1.0

D	esign Engineerir	Ig
Approval	Check	Design
之张印辉	宇李 印天	之高印建

No.18, Zhonghua West ST, Ganjingzi DST, Dalian, CHINA

Tel: +86-411-84619565

Email: info@good-display.com

Website: www.good-display.com

CONTENTS

1. Application test	4
2. Feature	4
3. Mechanical Specifications	4
4. Mechanical Drawing of EPD Module	5
5. Output Interface	6
6.Command Table	9
7. Electrical Characteristics	11
8. Optical characteristics	20
9. Handling, Safety and Environmental Requirements	21
10. Block Diagram	22
11. Matched Development Kit	23
12. Precautions	24

1. Over View

GDEP073E01 is a reflective electrophoretic E Ink® SpectraTM 6 technology display module on an active matrix TFT substrate. The panel is capable of displaying black, white, yellow, red, green and blue images depending on the associated lookup table used. The circuitry on the panel includes an integrated gate and source driver, timing controller, oscillator, DC-DC boost circuit, and memory to store the frame buffer and lookup tables, and additional circuitry to control VCOM and BORDER settings.

2. Features

Highlight Red, Yellow, Green and Blue color

High contrast

High reflectance

Ultra wide viewing angle

Ultra low power consumption

Pure reflective mode

Bi-stable

Antiglare hard-coated front-surface

Low current deep sleep mode

On chip display RAM

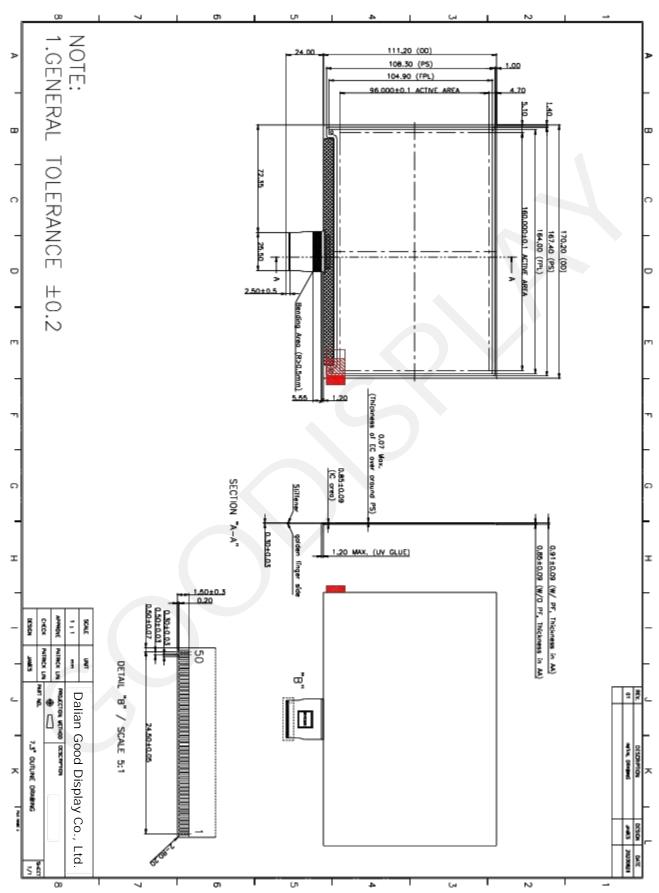
Waveform stored in On-chip OTP

Serial peripheral interface available

On-chip oscillator

On-chip booster and regulator control for generating VCOM, Gate and source driving voltage

I2C Signal Master Interface to read external temperature sensor


Available in COG package

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	7.3	Inch	
Display Resolution	800 (H) × 480 (V)	Pixel	PPI: 127
Active Area	160 (H) × 96 (V)	mm	
Pixel Pitch	0.200×0.200	mm	Square
Outline Dimension	170.2 (H) × 111.2 (V) × 0.91 (D)	mm	Without masking film
Module Weight	34.5±0.5	g	

🕒 GooDisplay

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

5.1 Connector type: FH34SRJ-50S-0.5SH(50) Pin Assignment (50-pin)

Pin #	Туре	Single	Description
1		NC	No connection and do not connect with other NC pins
2	Р	TFT_VCOM	TFT_VCOM driving voltage
3	Р	FPL_VCOM	FPL_VCOM driving voltage
4		NC	NC
5	I/O	GDRH	N-Channel MOSFET Gate Drive Control
6	I/O	RESEH	Current Sense Input for the Control Loop
7		GDRL	Reserved
8	Р	GND	Ground
9	I/O	GDRC	P-Channel MOSFET Gate Drive Control
10	I/O	RESEC	Current Sense Input for the Control Loop
11	Р	VPC	VPC driving voltage
12	Р	GND	Ground
13	Р	VGL	Negative Gate driving voltage
14	Р	VPH	VPH driving voltage
15	Р	VSH	Positive Source driving voltage
16	Р	VSH_LV	Positive Source driving voltage
17	Р	VSH_LV2	Positive Source driving voltage
18	Р	VSL	Negative Source driving voltage
19	Р	VSL_LV	Negative Source driving voltage
20	Р	VSL_LV2	Negative Source driving voltage
21	Р	GNDA	Ground ; Connect to GND
22		REFN	Reserved
23		REFP	Reserved
24	0	TSCL	I2C Interface to digital temperature sensor Clock pin
25	I/O	TSDA	I2C Interface to digital temperature sensor Data pin
26	Ι	BS0	Bus selection pin; L: 4-wire IF. H: 3-wire IF. (Default)
27	Ι	BS1	Bus selection pin; L: refer to BS0. (Default) H: Standard 4 wire SPI/dual SPI/quad SPI
28	Ι	RES#	Reset
29	0	BUSY_N	Busy state output pin
30	Ι	D/C#	Data /Command control pin(D/C)
31	Ι	CS#	Chip Select input pin(CSB)

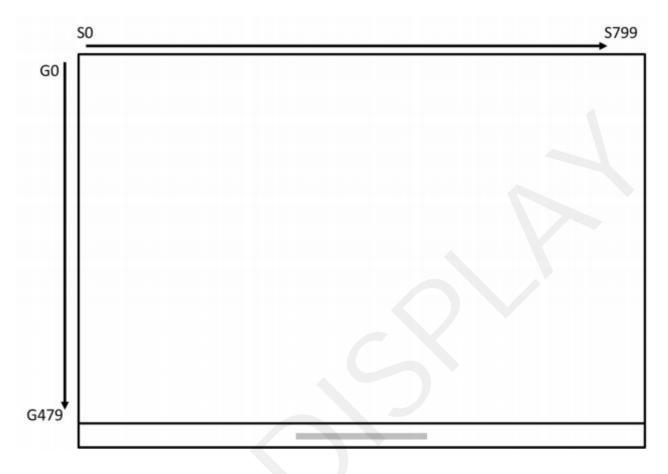
Pin #	Туре	Single	Description
32	Ι	SCL	serial clock pin (SPI)
33	I/O	SI0	serial data pin (SPI)
34	I/O	SI1	serial data pin ; Reserved
35	I/O	SI2	serial data pin ; Reserved
36	I/O	SI3	serial data pin ; Reserved
37	Р	VDDDO	Core logic power pin; Connect to VDDD
38	Р	VDD	Supply voltage
39	Р	GND	Ground; Connect to GNDA
40	Р	VDDIO	Supply voltage
41	Р	VCP2	Charge Pump Pin
42	Р	CP2N	Charge Pump Pin
43	Р	CP2P	Charge Pump Pin
44	Р	VCP1	Charge Pump Pin
45	Р	CP1N	Charge Pump Pin
46	Р	CP1P	Charge Pump Pin
47		CGH1N	Charge Pump Pin; Reserved
48		CGH1P	Charge Pump Pin; Reserved
49	Р	VGH	Positive Gate driving voltage
50	Р	VCOMBD	VCOMBD driving voltage

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled Low.

Note 5-2: This pin (D/C#) is Data/Command control pin connecting to theMCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulled Low, the data will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active Low.

Note 5-4: This pin (BUSY_N) is Busy state output pin. When Busy is low, the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin low when the driver IC is working such as:


- Outputting display waveform; or
- Programming with OTP
- Communicating with digital temperature sensor

Note 5-5: This pin (BS0) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected. Please refer to below Table.

BS0	MPU Interface
L	4-lines serial peripheral interface (SPI)
Н	3-lines serial peripheral interface (SPI) – 9 bits SPI

Table: Bus	interface	selection
------------	-----------	-----------

5.2 Panel Scan direction

6. Command Table

W/R	: 0: Write cycle 1: Read cycle	C/I	D: 0: Co	omman	nd 1:	Data	D	7~D0:	-: Don	't care			
	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	Registers	Setting
1	Deres OFF	0	0	0	0	0	0	0	0	1	0		02h
1	Power OFF	0	1	0	0	0	0	0	0	0	0		00h
2	Power ON	0	0	0	0	0	0	0	1	0	0		04h
2	D 01	0	0	0	0	0	0	0	1	1	1		07h
3	Deep Sleep	0	1	1	0	1	0	0	1	0	1		A5h
		0	0	0	0	0	1	0	0	0	0		10h
		0	1	#	#	#	#	#	#	#	#		
4	Data Start transmission	0	1								1		
		0	1	#	#	#	#	#	#	#	#		
5	5 Data Refresh	0	0	0	0	0	1	0	0	1	0		12h
3		0	1	0	0	0	0	0	0	0	1		01h

(1) Power OFF (R02H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	0	0	0	1	0
Power OFF	0	1	0	0	0	0	0	0	0	0

(2) Power ON (R04H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Power ON	0	0	0	0	0	0	0	1	0	0

(3) Deep Sleep (R07H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	0	0	1	1	1
Deep Sleep	0	1	1	0	1	0	0	1	0	1

Remark: To Exit Deep Sleep mode, User required to send HWRESET to the driver.

(4) Data Start transmission (R10H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	1	0	0	0	0
Data Start transmission	0	1	#	#	#	#	#	#	#	#
	0	1								
	0	1	#	#	#	#	#	#	#	#

After this command, data entries will be written into the RAM until another command is written.

(5) Data Refresh (R12H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	1	0	0	1	0
Data Refresh	0	1	0	0	0	0	0	0	0	1

When this command is received. IC will start the refresh process. BUSY_N will become "0". After the refresh process is finished, BUSY_N

will become "1".

7. Electrical Characteristics7.1 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Analog power	VDD	-0.5 to +3.6	V
Operating Temp. range	Topr	(0 to +50)	°C
Storage Temp. range	Tstg	(-25 to +60)	°C

Note: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics chapter.

ī

7.2 Display Module DC characteristics

The following specifications apply for: VDD = 3.0V, VDD_1.8 = 1.8V, TA = 25° C

		DIGITAL DC CHARACTERISTI	cs			
Symbol	Parameter	Conditions	MIN.	ТҮР.	MAX.	Unit
VDD	Logic supply voltage		2.5	3.0	3.6	V
VGH	Positive gate driving voltage		19.0	20.0	21.0	V
VGL	Negative gate driving voltage		-21.0	-20.0	-19.0	V
VSH	Positive source driving voltage		14.5	15.0	15.5	V
VSL	Negative source driving voltage		-15.5	-15.0	-14.5	V
VCOM_DC	VCOM_DC output voltage		-4.0	Adjusted	-0.3	V
VCOM_AC	VCOM_AC output voltage		VSL+ VCOM_DC	VCOM_DC	VSH+ VCOM_DC	V
Vil	Low level input voltage	Digital input pins		-	0.2VDD	V
VIH	High level input voltage	Digital input pins	0.8VDD	-	-	V
Vон	High level output voltage	Digital output pins, IOH = 8mA	0.8VDD	-	-	V
Vol	Low level output voltage	Digital output pins, IoL=8mA		-	0.2VDD	V
Імѕтв	Module stand-by current	Shut-down				uA
INC	Inrush Current	Booster on				mA
Ŧ		TYP Loading Pattern				mA
Ipc	Driving Peak Current	High Loading Pattern				mA
T		TYP Loading Pattern	-			mA
Imopr	Module operating current	High Loading Pattern				mA
		TYP Loading Pattern				mW
Р	Operation Power Dissipation	VDD=3.0V with DC-DC				111 vv
i Operation Power Dissipation		High Loading Pattern VDD=3.0V with DC-DC				mW
Рѕтву	Standby Power Dissipation	VDD=3.0V				uW
Imds	Module deep sleep current	Deep sleep mode	_		_	uA

Note:

- The Inrush Current means the inrush current occurs during dual booster on sequence, and it is measured by using Oscilloscope, and extract the Max value

- The Driving Peak Current means the peak current occurs during image update after dual booster on sequence, and it is measured by using Oscilloscope, and extract the Max value.

- The Module Operating Current data is measured by using Oscilloscope, and extract the Mean value.

-The typical loading power consumption is measured using associated 25° waveform with following pattern transition: from full white pattern to color pattern.

-The high loading power consumption is measured using associated 25° waveform with following pattern transition: from full white pattern to noise pattern (including random scattering of 6 colors)

- The minimum VDD value by 2.5V is based on typical application pattern with stable and continuing power supply. It does not apply on high loading pattern.
- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Good Display.
- Vcom value has been set in the IC on the panel.

7.3 Panel AC Characteristics 7.3.1 MCU Interface 7.3.1.1 MCU Interface Selection

In this module, there are 4-wire SPI and 3-wire SPI that can communicate with MCU. TheMCU interface mode can be set by hardware selection on BS0 pins. When it is "High", 4-wire SPI is selected. When it is "Low", 3-wire SPI (9 bits SPI) is selected.

Pin Name	Data/Command Interface		Control Signal				
Bus interface	SDA	SCL	CS#	D/C#	RES#		
SPI4	SDIN	SCLK	CS#	D/C#	RES#		
SPI3	SDIN	SCLK	CS#	L	RES#		

Table 7-1: MCU interface assignment under different bus interface mode

Note 7-1: Lis connected to GND Note 7-2: H is connected to VDD

7.3.1.2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCLK, serial data SDA, D/C#, CS#.

Function	CS#	D/C#	SCLK
Write Command	L	L	1
Write data	L	Н	1

Table 7-2: Control pins of 4-wire Serial Peripheral interface

Note 7-3: 1 stands for rising edge of signal

SDA is shifted into an -bit shift register in the order of D7, D6, ... D0. The data byte in the shift register is written to the Graphic Display Data RAM (RAM) or command register in the same clock. Under serial mode, only write operations are allowed.

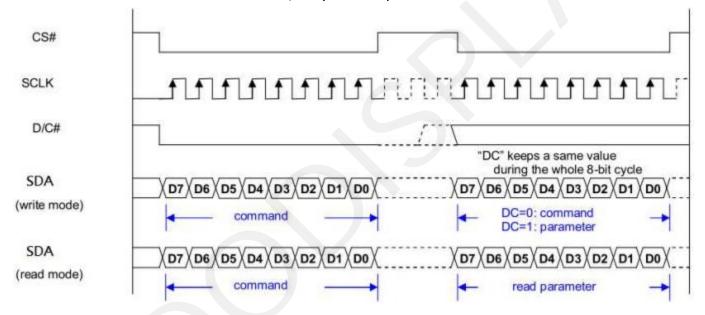
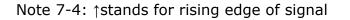
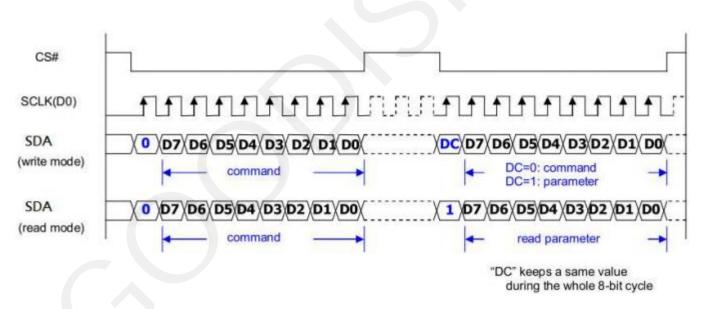


Figure 7-1: Write procedure in 4-wire Serial Peripheral Interface mode

7.3.1.3 MCU Serial Interface (3-wire SPI)

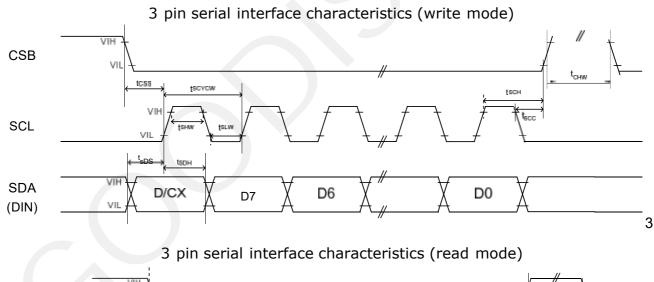

The 3-wire serial interface consists of serial clock SCLK, serial data SDA and CS#.

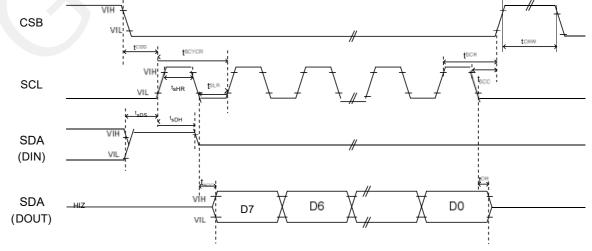

In 3-wire SPI mode, the pin D/C# can be connected to an external ground.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/ C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).Under serial mode, only write operations are allowed.

Function	CS#	D/C#	SCLK
Write Command	L	Tie LOW	1
Write data	L	Tie LOW	1

Table 7-3: Control pins of 3-wire Serial Peripheral Interface

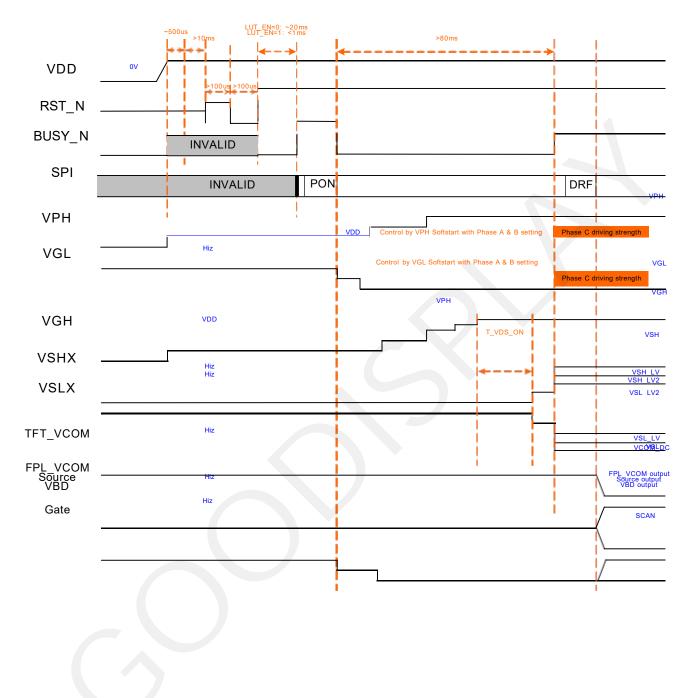



7.3.2 Timing Characteristics of Series Interface

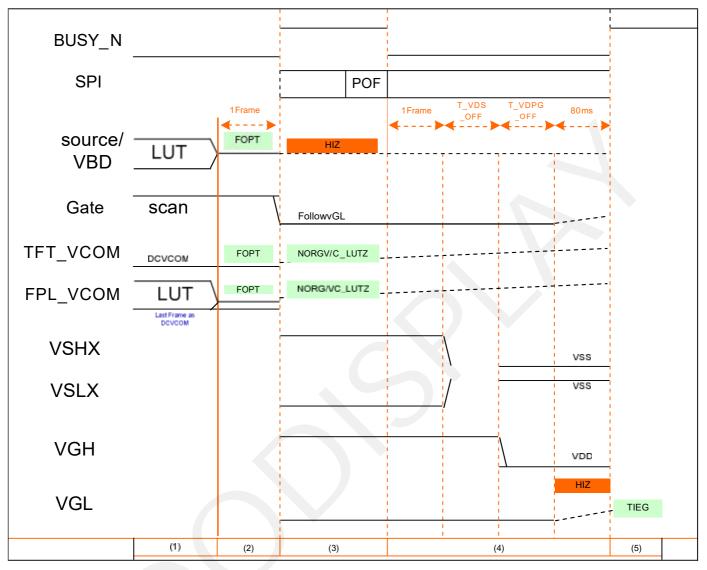

The following specifications apply for: VDDIO - GND = 2.4V to 3.6V, TOPR = $25^{\circ}C$, CL=20pF Serial Peripheral Interface Timing Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
tcss	CSB select setup time	60			ns
t _{CSH}	CSB select hold time	65			ns
tscc	CSB deselect setup time	20			ns
t _{CHW}	CSB deselect hold time	40			ns
t _{scycw}	Serial clock cycle (Write)	50			ns
t _{SHW}	SCL "H" pulse width (Write)	25			ns
t _{SLW}	SCL "L" pulse width (Write)	25			ns
t _{SCYCL}	Serial clock cycle (Read)	150			ns
t _{SHR}	SCL "H" pulse width (Read)	60			ns
t _{SLR}	SCL "L" pulse width (Read)	60			ns
t _{SDS}	Data setup time	30			ns
tsdн	Data hold time	30			ns
tacc	Access time			75	ns
t _{он}	Output disable time	10			ns

Note: All timings are based on 20% to 80% of VDDIO-GND



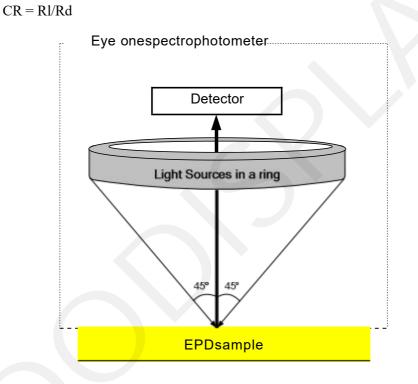
4 pin serial interface characteristics (write mode)


🕒 GooDisplay

7.3.3 Power On/Off Characteristics

Power ON Sequence

Power OFF Sequence


8. Optical Characteristics

8.1 Specification

Measurements are made with that the illumination is under an angle of 45 degrees, the detector is perpendicular unless otherwise specified.

8.2 Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (RI) and the reflectance in \boldsymbol{x}

8.3 Reflection Ratio

The reflection ratio is expressed as :

 $R = Reflectance Factor whiteboard x (L_{center} / L_{whiteboard})$

 L_{center} is the luminance measured at center in a white area (R=G=B=1).

 $L_{\mbox{whiteboard}}$ is the luminance of a standard whiteboard.

Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

9. Handling, Safety and Environmental Requirements

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care.

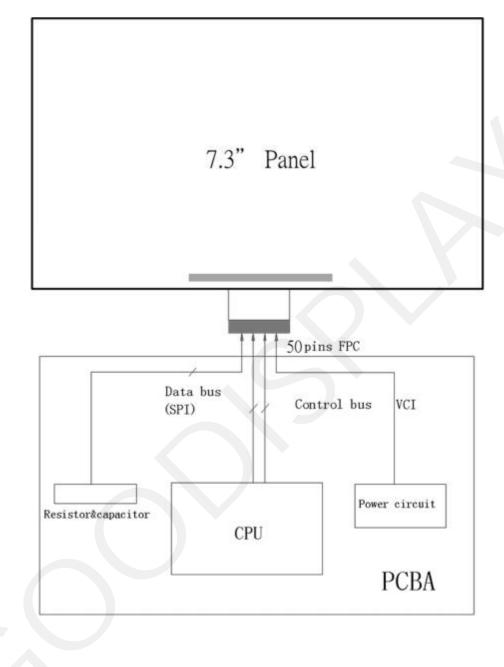
Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.


Data sheet status						
Product specification	Product specification The data sheet contains final product specifications.					
	Limiting values					
Limiting values given	Limiting values given are in accordance with the Absolute Maximum Rating System					
(IEC 134).						
Stress above one or more of the limiting values may cause permanent damage to						
the device.	the device.					
These are stress ratin	These are stress ratings only and operation of the device at these or any other					
conditions above those given in the Characteristics sections of the specification is						
not implied. Exposure to limiting values for extended periods may affect device						
reliability.						
	Application information					
14.11						

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification

RoHS

10. Reliability test

11. Matched Development Kit

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh black-white Epaper Display, three-color (black, white and red/Yellow) E-paper Display and four-color(black, white, red and yellow) Good Display 's E-paper Display. And it is also added the functions of USB serial port, FLASH c hip, font chip, current detection ect.

Development Kit consists of the development board and the pinboard. Supported development platforms include STM32 and ESP32. More details, please click to the following links:

https://www.good-display.com/product/219.html STM32 https://www.good-display.com/product/338.html

ESP32

12. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL /EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.
- (7) For more precautions, please click on the link: https://www.good-display.com/news/80.html