

GDEM0266T90

Dalian Good Display Co., Ltd.

Product Specifications

Customer	Standard
Description	2.66" E-PAPER DISPLAY
Model Name	GDEM0266T90
Date	2021/01/18
Revision	1.1

Design Engineering					
Approval	Check	Design			
宝刘印玉	四季	之吴 印良			

 $Zhongnan\ Building,\ No.18,\ Zhonghua\ West\ ST,Ganjingzi\ DST,Dalian,CHINA$

Tel: +86-411-84619565

Email: info@good-display.com Website: www.good-display.com

Revision History

Version	Content	Date	Producer
1.0	New release	2020/11/13	

CONTENTS

1.	Over View 6
2.	Features 6
3.	Mechanical Specification 7
4.	Mechanical Drawing of EPD Module
5.	Input/output Pin Assignment
6.	Electrical Characteristics
	6.1 Absolute Maximum Rating 10
	6.2 Panel DC Characteristics11
	6.3 MCU Interface 12
	6.3.1 MCU Interface Selection 12
	6.3.2 MCU Serial Interface (4-wire SPI)12
	6.3.3 MCU Serial Interface (3-wire SPI)13
	6.3.4 Interface Timing 14
7.	Command Table17
8.	Handling, Safety, and Environment Requirements 20
9.	Block Diagram

10.	Typical Application Circuit with SPI Interface	22
11.	Matched Development Kit	23
12.	Typical Operating Sequence	24
	12.3 OTP Operation Flow	24
	12.4 OTP Operation Reference Program Code	25
13.	Reliability Test	26
14.	Inspection condition	27
	14.1 Environment	27
	14.2 Illuminance	27
	14.3 Inspect method	27
	14.4 Display area	27
	14.5 Ghosting test method	27
	14.6 Inspection standard	28
	14.6.1 Electric inspection standard	28
	14.6.2 Appearance inspection standard	29
15.	Packaging	31
16.	Precautions	32

1. Over View

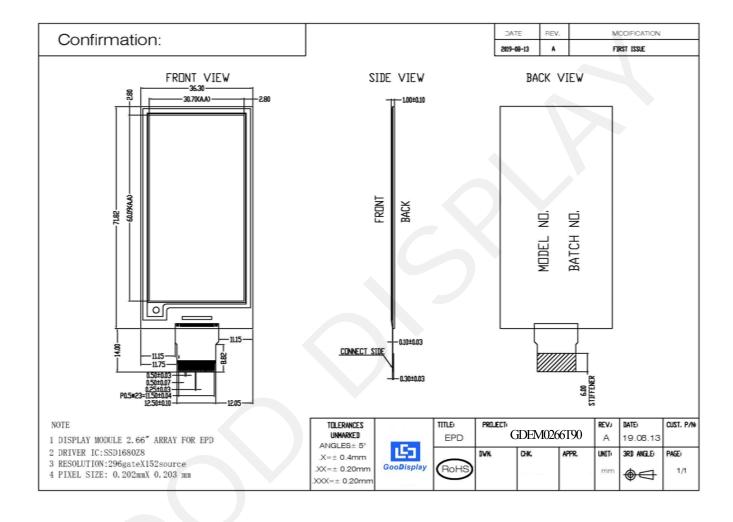
GDEM0266T90 is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white and black full display capabilities. The 2.66 inch active area contains 296x152 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2. Features

- ♦ 152×296 pixels display
- High contrast High reflectance
- Ultra wide viewing angle Ultra low power consumption
- ◆ Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Waveform can stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator
- ◆ On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- ◆ I2C signal master interface to read external temperature sensor
- Built-in temperature sensor

3. Mechanical Specification

Parameter	Specifications	Unit	Remark
Screen Size	2.66	Inch	
Display Resolution	296(V)×152(H)	Pixel	DPI:125
Active Area	60.088×30.704	mm	
Pixel Pitch	0.203×0.202	mm	
Pixel Configuration	Rectangle		
Outline Dimension	71.820 (V) ×36.304(H)×1.0(D)	mm	
Weight	4.7±0.5	g	


Symbol	Parameter	Conditions	Min	Typ.	Max	Units	Notes
V.C	Black State L* value		-	18	20		3-1
KS	Black Ghosting Δ L		-	1	-		3-1
WC	White State L* value		66	67	-		3-1
WS	White Ghosting △L		-	1	-		3-1
R	White Reflectivity	White	30	34	ı	%	3-1
CR	Contrast Ratio	Indoor	15:1	20:1	-		3-1
							3-2
GN	2Grey Level	-	1	-	ı		
Life		Temp:23±3°C Humidity:55±10%RH		5years			3-3

Notes:

- **3-1.** Luminance meter: Eye-One Pro Spectrophotometer.
- **3-2.** CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.
- **3-3.** When the product is stored. The display screen should be kept white and face up.

4. Mechanical Drawing of EPD Module

5. Input/output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	1
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage 2	
6	TSCL	О	I2C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I2C Interface to digital temperature sensor Data pin	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I/O	Serial Data pin (SPI)	
15	VDDIO	Р	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	C	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	Keep Open
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	С	VCOM driving voltage	

I = Input Pin, O = Output Pin, I/O = Bi-directional Pin (Input/output),

P = Power Pin, C = Capacitor Pin

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when -Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State MCU Interface					
L	4-lines serial peripheral interface(SPI) - 8 bits SPI				
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI				

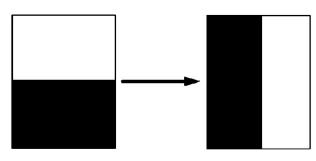
6. Electrical Characte ristics

6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.3 to +6.0	V
Logic Input voltage	VIN	-0.3 to VCI +0.3	V
Operating Temp range	TOPR	0 to +50	°C.
Storage Temp range	TSTG	-25 to+70	°C.
Optimal Storage Temp	TSTGo	23±3	°C.
Optimal Storage Humidity	HSTGo	55±10	%RH

Note:

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.


6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, $TOPR=23^{\circ}C$.

Parameter	Symbol	Condition	Applicable pin	Min.	Typ.	Max.	Unit
Single ground	Vss	-		-	0	-	V
Logic supply voltage	Vci	-	VCI	2.2	3.0	3.7	V
Core logic voltage	V _{DD}		VDD	1.7	1.8	1.9	V
High level input voltage	Vih	-	-	0.8 Vci	-	-	V
Low level input voltage	V _{IL}	-	-	-	-	0.2 VcI	V
High level output voltage	Voh	IOH = -100uA	-	0.9 Vci	-	-	V
Low level output voltage	Vol	IOL = 100uA	-	-	-	0.1 Vci	V
Typical power	P _{TYP}	VcI =3.0V	-	-	13.5	-	mW
Deep sleep mode	PSTPY	V _{CI} =3.0V	- <	- /	0.003	-	mW
Typical operating current	Iopr_VCI	V _{CI} =3.0V	_	-	4.5	-	mA
Image update time	-	23 °C	-	3	4	5	sec
Typical peak current	Iopr_VCI	2.2~3.7v			40	60	mA
Sleep mode current	Islp_Vci	DC/DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	Idslp_Vci	DC/DC off No clock No input load Ram data not retain	-	-	1	5	uA

Notes:

- 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.
- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical characteristics are only guaranteed under the controller & waveform provided by Good Display.
- 4. Electrical measurement: Tektronix oscilloscope MDO3024, Tektronix current probe-TCP0030A.

6.3 MCU Interface

6.3.1 MCU Interface Selection

The pin assignment at different interface mode is summarized in Table 6-3-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name	Data/Comma	mmand Interface Control Signal			
Bus interface	SDA	SCL	CS#	D/C#	RES#
BS1=L 4-wire SPI	SDA	SCL	CS#	D/C#	RES#
BS1=H 3-wire SPI	SDA	SCL	CS#	L	RES#

6.3.2 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

Function	CS#	D/C#	SCL
Write command	L	L	1
Write data	L	Н	↑

Note: ↑ stands for rising edge of signal

In the write mode SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte . The data byte in the shift register is written to the Graphic Display Data RAM /Data Byte register or command Byte register according to D/C# pin.

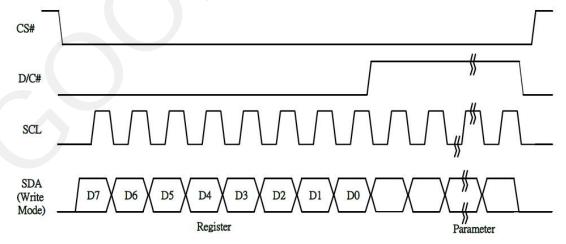


Figure 6-1: Write procedure in 4-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

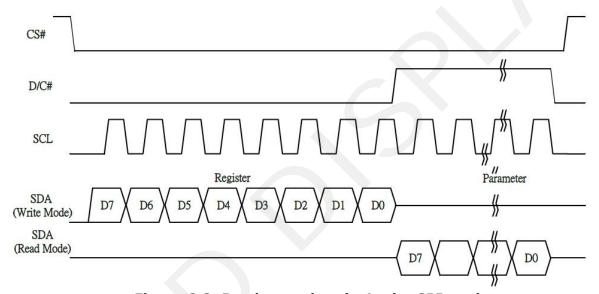


Figure 6-2: Read procedure in 4-wire SPI mode

6.3.3 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

Function	CS#	D/C#	SCL
Write command	L	Tie	1
Write data	L	Tie	1

Note: ↑ stands for rising edge of signal

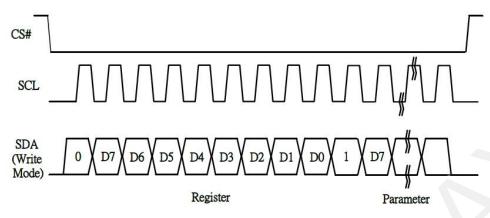


Figure 6-3: Write procedure in 3-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. D/C=0 is shifted thru SDA with one rising edge of SCL
- 3. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

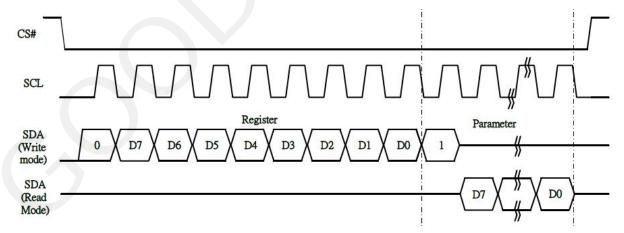
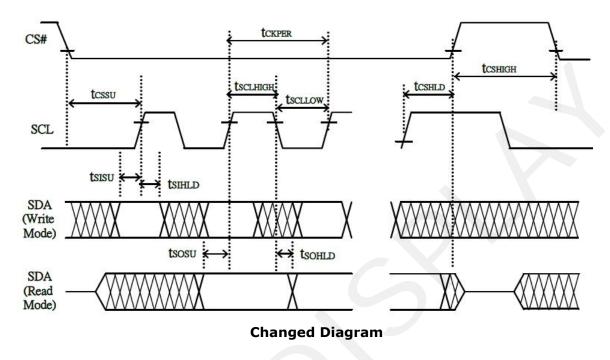



Figure 6-4: Read procedure in 3-wire SPI mode

6.3.4 Interface Timing

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C.

Serial Interface Timing Characteristics

 $(VCI - VSS = 2.2V \text{ to } 3.7V, TOPR = 23^{\circ}C, CL = 20pF)$

Write mode

Symbol	Parameter	Min	Тур.	Max	Unit
fSCL	SCL frequency (Write Mode)			20	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	60			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	65			ns
tCSHIGH	Time CS# has to remain high between two transfers	100			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25			ns
tSCLLOW	Part of the clock period where SCL has to remain low	25			ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Symbol	Parameter	Min	Тур.	Max	Unit
fSCL	SCL frequency (Read Mode)			2.5	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	100			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	50			ns
tCSHIGH	Time CS# has to remain high between two transfers	250			ns
tSCLHIG H	Part of the clock period where SCL has to remain high	180			ns
tSCLLOW	Part of the clock period where SCL has to remain low	180			ns
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

7.Command Table

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	01	0	0	0	0	0	0	0	1	Driver	Gate setting
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Output	Set A[8:0]=0097h
0	1		0	0	0	0	0	0	0	A8	control	Set B[8:0]=00h
0	1		0	0	0	0	0	B2	B1	В0		
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep	Deep Sleep mode Control:
0	1		0	0	0	0	0	0	0	A_0	mode	A[1:0]: Description
0	1		1	A6	A5	A4	A3	A2	A1	A0		00 Normal Mode [POR]
0	1		1	B6	B5	B4	B3	B2	B1	B0		01 Enter Deep Sleep Mode 111 Enter Deep Sleep Mode 2
	1		1	ВО	БЭ	D4	БЭ	DZ	DI	Вυ		After this command initiated, the chip will
0	1		1	C6	C5	C4	C3	C2	C1	C0		enter Deep Sleep Mode, BUSY pad will
0	1		0	0	D5	D4	D3	D2	D1	D0		keep output high.
												Remark: To Exit Deep Sleep mode, User required
												to send HWRESET to the driver
0	0	12	0	0	0	1	0	0	1	0	SWRESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.
0	0	18	0	0	0	1	1	0	0	0	Temperature	Temperature Sensor Selection
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Sensor Control	A[7:0] = 48h [POR], external temperature sensor
											Control	A[7:0] = 80h Internal temperature sensor
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h User should not interrupt this operation to avoid corruption of panel images.

								_			p. 1	T
0	0	22	0	0	1	0	0	0	1	0	Display	Display Update Sequence Option:
											Update	Enable the stage for Master Activation
											Control 2	A[7:0] = FFh (POR)
												Operating sequence
												Parameter
												(in Hex)
												Enable clock signal 80
												Disable clock signal 01
												Enable clock signal
												Enable Analog
												C0
												Disable Analog
												Disable clock signal
												03
												Enable clock signal
												Load LUT with DISPLAY Mode 1
												Disable clock signal
												C7
												Enable clock signal
0	1		A7	A6	A5	A4	A3	A2	A1	A0		Enable Analog
												Display with DISPLAY Mode 2
												Disable Analog
												Disable OSC
												F7
												Enable clock signal
												Enable Analog
												Load temperature value
												DISPLAY with DISPLAY Mode 2
												Disable Analog
												Disable OSC
												FF
0	0	2F	0	0	1	0	1	1	1	1	Status Bit	Read IC status Bit [POR 0x01]
					-			_		_	Read	A[5]: HV Ready Detection flag [POR=0]
											rtoud	0: Ready
												1: Not Ready
						`						-
												A[4]: VCI Detection flag [POR=0] 0: Normal
												1: VCI lower than the Detect level
												A[3]: [POR=0]
												A[2]: Busy flag [POR=0]
												0: Normal
												1: BUSY
												A[1:0]: Chip ID [POR=01]
'												Remark:
												A[5] and A[4] status are not valid after
												RESET, they need to be initiated by
												command 0x14 and command 0x15
												respectively
L												

		20			1	1	1	1	_			
0	0	3C	0	0	1	1	1	1	0	0	_	Select border waveform for VBD A[7:0] = C0h [POR], set VBD as HIZ.
0	1		A ₇	A_6	A_5	A_4	0	0	A_1	A_0		A [7:6] :Select VBD option
												A[7:6] Select VBD as
												00 GS Transition,
												Defined in A[2] and
												A[1:0] 01 Fix Level,
												Defined in A[5:4]
												10 VCOM
												11[POR] HiZ
												A [5:4] Fix Level Setting for VBD
												A[5:4] VBD level
												00 VSS 01 VSH1
												10 VSL
												11 VSH2
												A[2] GS Transition control
												A[2] GS Transition control
												0 Follow LUT
												(Output VCOM @ Yellow) 1 Follow LUT
												A [1:0] GS Transition setting for VBD
												A[1:0] VBD Transition
												00 LUT0
												01 LUT1
												10 LUT2 11 LUT3
		4.4	0	1	0	0	0	1	0	0	C-4 DAM V	
0	0	44	0	1	0	0	0	1	0	0		Specify the start/end positions of the window address in the X direction by an address unit
0	1		0	0	0	A ₄	A ₃	A ₂	A ₁	A ₀	/ End	A[4:0]: XSA[4:0], X Start, POR = 00h
0	1		0	0	0	B ₄	B_3	B_2	\mathbf{B}_1	\mathbf{B}_0	position	B[4:0]: XEA[4:0], X End, POR = 0Ch
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y-	Specify the start/end positions of the window
0	1		A ₇	A ₆	A_5	A_4	A_3	A_2	A_1	A_0	address Start / End	address in the Y direction by an address unit A[8:0]: YSA[8:0], Y Start, POR = 00D3h
0	1		0	0	0	0	0	0	0	A ₈	position	B[8:0]: YEA[8:0], Y End, POR = 0000h
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B_2	B ₁	B_0	_	
0	1		0	0	0	0	0	0	0	\mathbf{B}_8		
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X	Make initial settings for the RAM X address
0	1		0	0	0	A_4	A ₃	A_2	A_1	A_0	address counter	in the address counter (AC) A[4:0]: XAD[4:0], POR is 00h
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y	Make initial settings for the RAM Y address
0	1		A ₇	A_6	A_5	A_4	A_3	A_2	A_1	A_0	address	in the address counter (AC)
0	1		0	0	0	0	0	0	0	A_8	counter	A[8:0]: YAD[8:0], POR is 00D3h

8. Handling, Safety, and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module. Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status

Product specification This data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

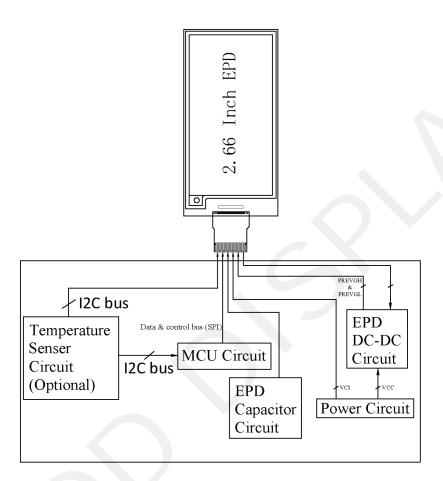
Application information

Where application information is given, it is advisory and does not form part of the specification.

Product Environmental certification

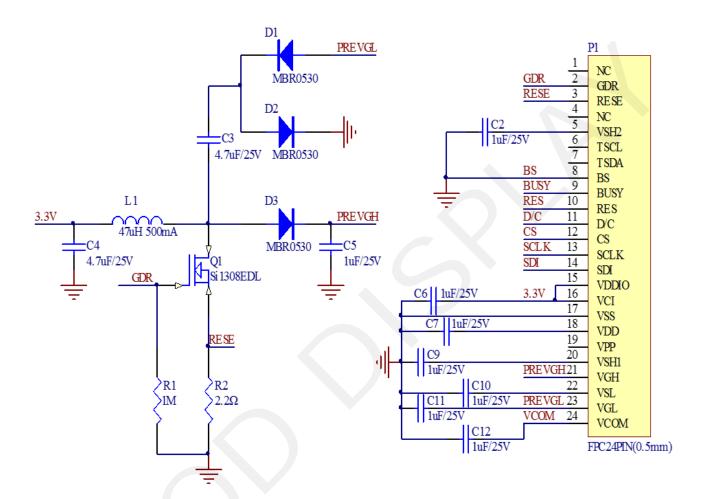
ROHS

REMARK


All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

Transport environment

When the humidity of transportation environment is between 45%RH~70%RH, the product can be stored for 30 days, and the product can be stored for 10 days if it is lower or higher than this range



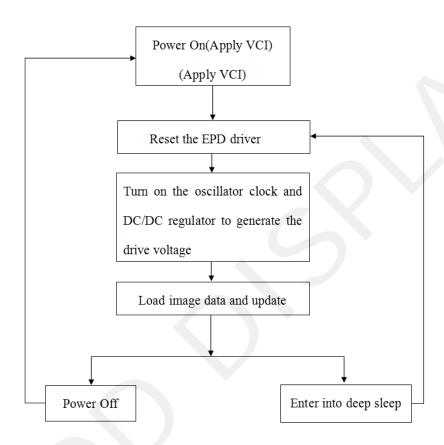
9. Block Diagram

10. Typical Application Circuit with SPI Interface

11. Matched Development Kit

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh black-white E-paper Display and three-color (black, white and red/Yellow) Good Display 's E-paper Display. And it is also added the functions of USB serial port, Raspberry Pi and LED indicator light ect.

DESPI Development Kit consists of the development board and the pinboard.


More details about the Development Kit, please click to the following link:

https://www.good-display.com/product/53/

12. Typical Operating Sequence

12.1 OTP Operation Flow

12.2 OTP Operation Reference Program Code

ACTION	VALUE/DATA	COMMENT			
	POWER ON				
delay	10ms				
PI	N CONFIG				
RESE#	low	Hardware reset			
delay	200us				
RESE#	high				
delay	200us				
Read busy pin		Wait for busy low			
Command 0x12		Software reset			
Read busy pin		Wait for busy low			
	SET VOLTAGE AND L	OAD LUT			
	LOAD IMAGE AND	UPDATE			
Command 0x24	5624bytes	Load image (152/8*296)(BW)			
Command 0x20					
Read busy pin		Wait for busy low			
Command 0x10	Data 0X01	Enter deep sleep mode			
	POWER OFF				

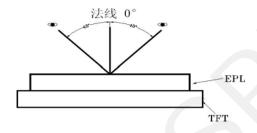
13. Reliability Test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=+70°C, RH=40%, 240h Test in white pattern
3	High-Temperature Operation	T=+50°C, RH=30%, 240h
4	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
5	High Temperature, High Humidity Storage	T=60°C, RH=80%, 240h Test in white pattern
6	Temperature Cycle	1 cycle:[-25°C 30min]→[+60 °C 30 min] : 50 cycles Test in white pattern
7	ESD Gun	Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

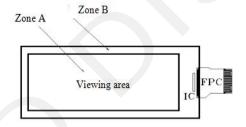
Note:

- 1. Stay white pattern for storage and non-operstion test.
- 2. Operation is black—white pattern, the interval is 150s.

14.Inspection condition

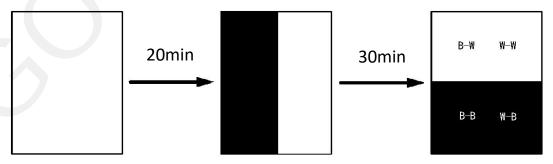

14.1 Environment

Temperature: 23±3°C Humidity: 55±10%RH


14.2 Illuminance

Brightness:1200~1500LUX; distance:20-30CM; Angle: Relate 45° surround.

14.3 Inspect method



14.4 Display area

14.5 Ghosting test method

Three-color ghosting is measured with following transition from horizontal 3 scale pattern to vertical 3 scale pattern. The listed optical characteristics are only guaranteed under the controller & waveform provided by DKE.

1) Measurement Instruments: X-rite i1Pro

2) Ghosting formula:

W ghosting: $\triangle L= Max (\Delta L(W-W, B-W)) - Min (\Delta L(W-W B-W))$

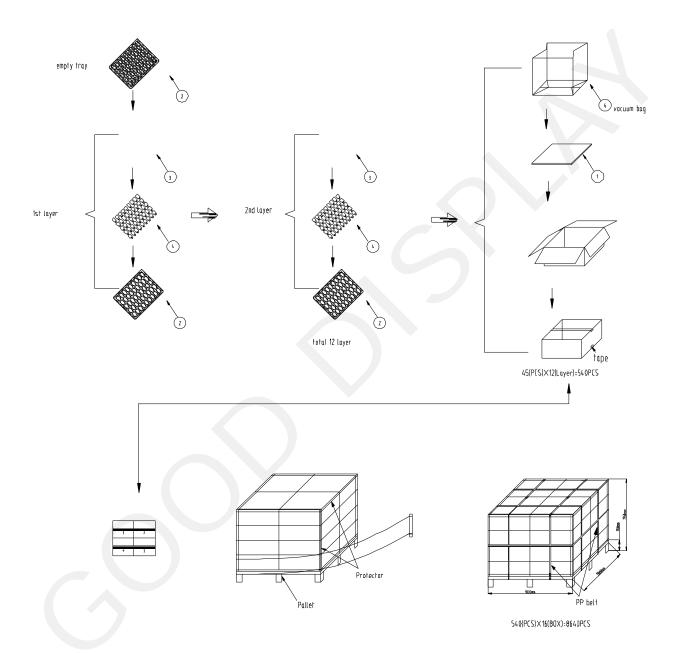
K ghosting: $\triangle L= Max (\Delta L(W-B, B-B)) - Min(\Delta L(W-B, B-B))$

14.6 Inspection standard

14.6.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA	4	
2	Black/White spots	D≤0.25mm, Allowed 0.25mm <d≤0.4mm allowable="" d="" n≤4="">0.4mm is not allowed</d≤0.4mm>		Visual inspection	
3	Show B/W lines	L \leq 0.4mm,W \leq 0.1mm negligible 0.4mm $<$ L \leq 1.0mm 0.1mm $<$ W \leq 0.4mm N \leq 4 allowable L $>$ 1.0mm ,W $>$ 0.4mm is not allowed	MI	Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	
5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Display abnormal	Not Allow			

14.6.2 Appearance inspection standard


NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	D=(L+W)/2 D \leq 0.25mm negligible 0.25mm $<$ D \leq 0.4mm N \leq 4 allowable D \geq 0.4mm is not allowed	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual	Zone A Zone B
3	Dirty	Allowed if can be removed	MI	/ Microscope	Zone A Zone B
4	Chips/Scratch/ Edge crown	$X \le 3$ mm, $Y \le 0.5$ mm And without affecting the electrode is permissible 2 mm $\le X$ or 2 mm $\le Y$ Not Allow $W \le 0.1$ mm, $L \le 5$ mm, No harm to the electrodes and $N \le 2$ allow	MI	Visual / Microscope	Zone A Zone B
5	TFT Cracks	Not Allow	MA	Visual / Microscope	Zone A Zone B
6	Dirty/ foreign body	Allowed if can be removed/ allow	MI	Visual / Microscope	Zone A / Zone B
7	FPC broken/ Goldfingers xidation/ scratch	Not Allow	MA	Visual / Microscope	Zone B
8	TFT edge bulge	TFT edge bulge:	MI	Visual	Zone A

	/TFT chromatic aberration	X≤3mm, Y≤0.3mm Allowed TFT chromatic aberration :Allowed		/ Microscope	Zone B
9	PCB damaged/ Poor welding/ Curl	PCB (Circuit area) damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%			
10	Edge glue height/ Edge glue bubble	Edge Adhesives H≤PS surface (Including protect film) Edge adhesives seep in≤1/2 Margin width Length excluding Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤0.5mm₀ n≤5	MI	Visual / Ruler	Zone B
11	Protect film	Surface scratch but not effect protect function, Allowed		Visual Inspection	
12	Silicon glue	Thickness ≤ PS surface(With protect film): Full cover the IC; Shape: The width on the FPC ≤ 0.5mm (Front) The width on the FPC≤1.0mm (Back) smooth surface, No obvious raised.	MI	Visual Inspection	
13	Warp degree (TFT substrate)	FPL t≤1.0mm	MI	Ruler	
14	Color difference in COM area (Silver point area)	Allowed		Visual Inspection	

15. Packing

16. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL /EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.
- (7) For more precautions, please click on the link: https://www.good-display.com/news/80.html