

E-paper Display Series

GDEH0213Z98

Dalian Good Display Co., Ltd.

Product Specifications

Customer	Standard
Description	2.13" E-PAPER DISPLAY
Model Name	GDEH0213Z98
Date	2021/01/18
Revision	3.1

Design Engineering						
Approval Check Design						
宝刘印玉	心李	之矣 印良				

No.17 Gonghua Street, Shahekou District, Dalian 116021 China

Tel: +86-411-84619565

Email: info@good-display.com

Website: www.good-display.com

Table of Contents

1.	General Description	5
	1.1 Overview	5
	1.2 Feature	5
	1.3 Mechanical Specification	6
	1.4 Mechanical Drawing of EPD module	7
	1.5 Input/Output Terminals	8
	1.6 Reference Circuit	10
	1.7 Matched Development Kit	11
2.	Environmental	12
	2.1 Handling, Safety and Environmental Requirements	12
	2.2 Reliability test	14
3.	Electrical Characteristics	
	3.1 Absolute maximum rating	15
	3.2 DC Characteristics	16
	3.3 Serial Peripheral Interface Timing	
	3.4 Power Consumption	
	3.5 MCU Interface	19
	3.6 Temperature sensor operation	
4.	Typical Operating Sequence	
	4.1 Normal Operation Flow	24
	Command Table	
	Data Entry Mode Setting(11h)	
7.	Optical characteristics	
	7.1 Specifications	
	7.2 Definition of contrast ratio	
	7.3 Reflection Ratio	
8.	Point and line standard	41
9.	Packing	43
10	. Precautions	44

Version	Content	Date	Producer
1.0	New release	2019/09/19	
1.1	Update "drawing" and the command table" Border Waveform Control" and "Display Update Control 1"and"refresh time requirement" and " absolute maximum rating"		
2.0	2.0 Update reliability test		
3.0	Modified Barcode	2019/12/06	
3.1	Updating	2021/01/18	

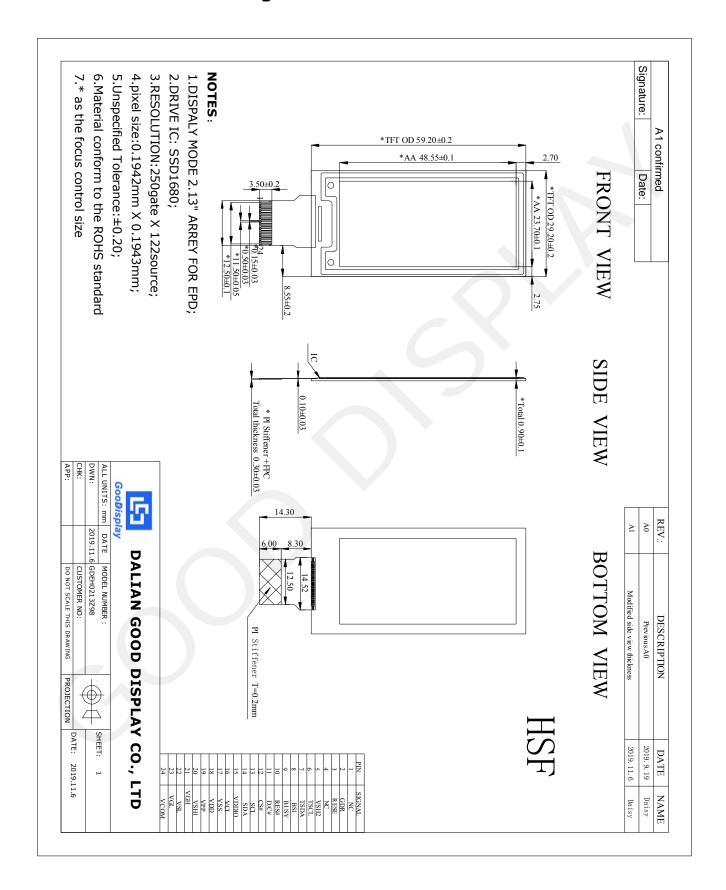
1. General Description

1.1 Overview

GDEH0213Z98 is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The2.13"active area contains 122×250pixels, and has 1-bit B/W/R full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.

1.2 Features

- 122×250 pixels display
- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- · Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape, portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Low voltage detect for supply voltage
- High voltage ready detect for driving voltage
- Internal temperature sensor
- 10-byte OTP space for module identification
- Waveform stored in On-chip OTP
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I2C signal master interface to read external temperature sensor/ built-in temperature sensor



1.3 Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.13	Inch	
Display Resolution	122(H)×250(V)	Pixel	Dpi: 130
Active Area	23.7(H)×48.55(V)	mm	
Pixel Pitch	0.194×0.194	mm	
Pixel Configuration	Rectangle		
Outline Dimension	29.2(H)×59.2 (V) ×0.9(D)	mm	Without masking film
Weight	3±0.2	g	

1.4 Mechanical Drawing of EPD module

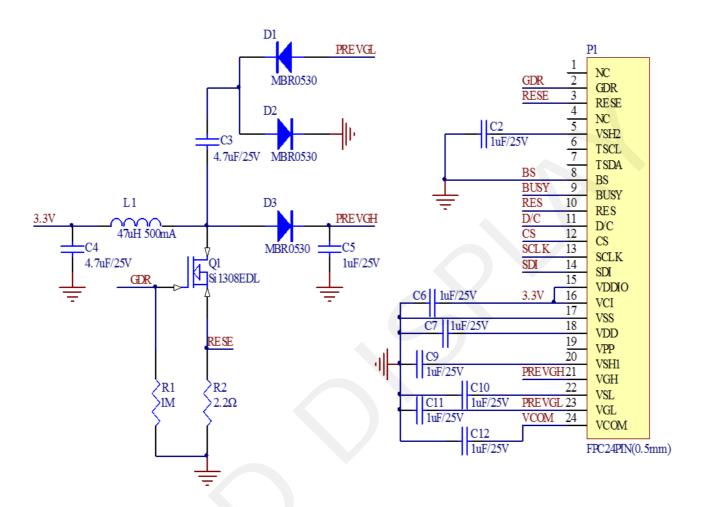
1.5 Input/Output Terminals

Pin #	Single	Description	Remark
1	NC	No connection and do not connect with other NC pins	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins	Keep Open
5	VSH2	Positive Source driving voltage	
6	TSCL	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I ² C Interface to digital temperature sensor Data pin.	
8	BS1	Bus selection pin	Note 1.5-5
9	BUSY	Busy state output pin	Note 1.5-4
10	RES #	Reset signal input.	Note 1.5-3
11	D/C #	Data /Command control pin	Note 1.5-2
12	CS#	The chip select input connecting to the MCU.	Note 1.5-1
13	SCL	Serial clock pin for interface.	
14	SDA	Serial data pin for interface.	
15	VDDIO	Power input pin for the Interface.	
16	VCI	Power Supply pin for the chip	
17	VSS	Ground (Digital)	
18	VDD	Core logic power pin	
19	VPP	Power Supply for OTP Programming	
20	VSH1	Positive Source driving voltage	
21	VGH	Power Supply pin for Positive Gate driving voltage and VSH	
22	VSL	Negative Source driving voltage	
23	VGL	Power Supply pin for Negative Gate driving voltage, VCOM and VSL	
24	VCOM	VCOM driving voltage	

Note 1.5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication: only when CS# is pulled LOW.

Note 1.5-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as command.

Note 1.5-3: This pin (RES#) is reset signal input. The Reset is active low.


Note 1.5-4: This pin (BUSY) is Busy state output pin. When Busy is High ,the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin High when the driver IC is working such as:

- Outputting display waveform; or
- Communicating with digital temperature sensor

Note 1.5-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected.

1.6 Reference Circuit

1.7 Matched Development Kit

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh black-white E-paper Display and three-color (black, white and red/Yellow) Good Display 's E-paper Display. And it is also added the functions of USB serial port, Raspberry Pi and LED indicator light ect.

DESPI Development Kit consists of the development board and the pinboard.

More details about the Development Kit, please click to the following link:

http://www.good-display.com/companyfile/Development-Board-8

2. Environmental

2.1 HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display module should be kept flat or fixed to a rigid, curved support with limited bending along the long axis. It should not be used for continual flexing and bending. Handle with care. Should the display break do not touch any material that leaks out. In case of contact with the leaked material then wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions

- (1) It`s recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
- (2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Data sheet status				
Product specification	The data sheet contains final product specifications.			

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification					
ROHS					
	REMARK				

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

2.2 Reliability test

	TEST	CONDITION	REMARK
1	High-Temperature Operation	T=40°C, RH=35%RH, For 240Hr	
2	Low-Temperature Operation	T = 0°C for 240 hrs	1
3	High-Temperature Storage	T=50°C RH=35%RH For 240Hr	Test in white pattern
4	Low-Temperature Storage	T = -25°C for 240 hrs Test in white pattern	Test in white pattern
5	High Temperature, High- Humidity Operation	T=40°C, RH=90%RH, For 168Hr	
6	High Temperature, High- Humidity Storage	T=50°C, RH=90%RH, For 240Hr	Test in white pattern
7	Temperature Cycle	-25°C(30min)~60°C(30min),50 Cycle	Test in white pattern
8	Package Vibration	1.04G,Frequency:20~200Hz Direction: X,Y,Z Duration:30 minutes in each direction	Full packed for shipment
9	Package Drop Impact	Drop from height of 100 cm on Concrete surface Drop sequence: 1 corner, 3edges, 6face One drop for each.	Full packed for shipment
10	UV exposure Resistance	765 W/m² for 168hrs,40℃	
11	Electrostatic discharge	Machine model: +/-250V,0Ω,200pF	

Actual EMC level to be measured on customer application.

Note1: Stay white pattern for storage and non-operation test.

Note2: Operation is black/white/red pattern , hold time is 150S.

Note3: The function, appearance, opticals should meet the requirements of the test before and after the test.

Note4: Keep testing after 2 hours placing at 20°C-25°C.

3. Electrical Characteristics

3.1 ABSOLUTE MAXIMUM RATING

Table 3.1-1: Maximum Ratings

Symbol	Parameter	Rating	Unit	Humidity	Unit	Note
V_{CI}	Logic supply voltage	-0.5 to +6.0	V	-	-	
T_{OPR}	Operation temperature	0 to 40	°C	45 to70	%	Note 3.1-1
Tttg	Transportation temperature	-25 to 60	°C	-	-	Note 3.1-2
Tstg	Storage condition	0 to 40	°C	45 to70	%	Maximum storage
						time: 5 years
-	After opening the package	0 to 40	°C	45 to70	%	

Note 3.1-1: We guarantee the single pixel display quality for 0-35°C, but we only guarantee the barcode readable for 35-40°C. Normal use is recommended to refresh every 24 hours.

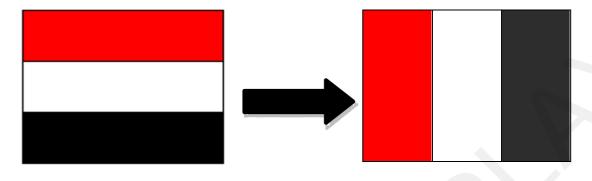
Note 3.1-2: Tttg is the transportation condition, the transport time is within 10 days for $-25^{\circ}\text{C} \sim 0^{\circ}\text{C}$ or $40^{\circ}\text{C} \sim 60^{\circ}\text{C}$.

Note 3.1-3: When the three-color product is stored. The display screen should be kept white and face up. In addition, please be sure to refresh the e-paper every three months.

3.2 DC CHARACTERISTICS

The following specifications apply for: VSS=0V, VCI=3.3V, TOPR=25℃.

Table 3.2-1: DC Characteristics


Symbol	Parameter	Test	Applicable pin	Min.	Тур.	Max.	Unit
VCI	VCI operation voltage		VCI	2.2	3	3.7	V
VIH	High level input voltage		SDA, SCL, CS#,	0.8VDDIO			V
VIL	Low level input voltage		D/C#, RES#, BS1			0.2VDDIO	V
VOH	High level output	IOH =-100uA		0.9VDDIO			V
VOL	Low level output voltage	IOL = 100uA	BUSY			0.1VDDIO	V
lupdate	Module operating			-	3	-	mA
Isleep	Deep sleep mode	VCI=3.3V	_	-		3	uA

The Typical power consumption is measured using associated 25°C waveform with following pattern transition: from horizontal scan pattern to vertical scan pattern. (Note 3.2-1)

- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Good Display.
- Vcom value will be OTP before in factory or present on the label sticker.

Note 3.2-1
The Typical power consumption

3.3 Serial Peripheral Interface Timing

The following specifications apply for: VSS=0V, VCI=2.2V to 3.7V, TOPR=25°C , CL=20pF

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Write Mode)			20	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	60			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	65			ns
tCSHIGH	Time CS# has to remain high between two transfers	100			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25			ns
tSCLLOW	Part of the clock period where SCL has to remain low	25			ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Parameter SCL frequency (Read Mode)	Min	Тур	Max	Unit
SCL frequency (Read Mode)				
			2.5	MHz
Time CS# has to be low before the first rising edge of SCLK	100			ns
Time CS# has to remain low after the last falling edge of SCLK	50			ns
Time CS# has to remain high between two transfers	250			ns
Part of the clock period where SCL has to remain high	180			ns
Part of the clock period where SCL has to remain low	180			ns
Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns
	Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low ime SO(SDA Read Mode) will be stable before the next rising edge of SCL	Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers 250 Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low 180 ime SO(SDA Read Mode) will be stable before the next rising edge of SCL	Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low ime SO(SDA Read Mode) will be stable before the next rising edge of SCL 50	Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low ime SO(SDA Read Mode) will be stable before the next rising edge of SCL 50

Note: All timings are based on 20% to 80% of VDDIO-VSS

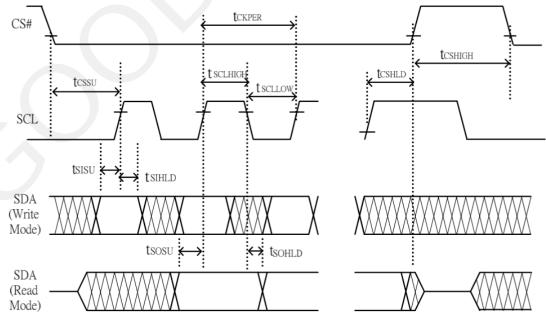


Figure 3.3-1: SPI timing diagram

3.4 Power Consumption

Parameter	Symbol	Conditions	TYP	Max	Unit	Remark
Panel power consumption during update	-	25℃	-	70	mAs	-
Deep sleep mode	-	25℃	-	3	uA	-

 $MAS = update \ average \ current \ \times update \ time$

3.5 MCU Interface

3.5.1 MCU interface selection

The GDEH0213Z98 can support 3-wire/4-wire serial peripheral interface. In the Module, the MCU interface is pin selectable by BS1 pins shown in.

Table 3.5.1-1: MCU interface selection

BS1	MPU Interface						
L 4-lines serial peripheral interface (SPI)							
Н	3-lines serial peripheral interface (SPI) - 9 bits SPI						

3.5.2 MCU Serial Peripheral Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 3.5.2-2 and the write procedure 4-wire SPI is shown in Figue 3.5.2-2.

Table 3.5.2-2: Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	L	L
Write data	1	Data bit	Н	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal

In the write mode, SDA is shifted into an 8-bit shift register on each rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte registerr according to D/C# pin.

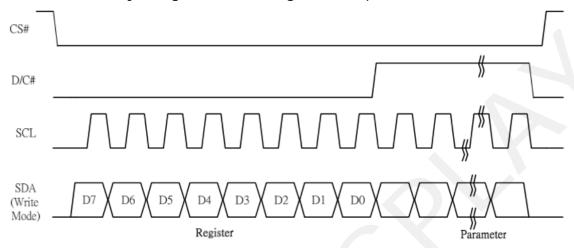


Figure 3.5.2-1: Write procedure in 4-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. SDA is shifted into an 8-bit shift register on each rising edge of SCL in the order of D7, D6, ... D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on each falling edge of SCL in the order of D7, D6, ... D0.
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

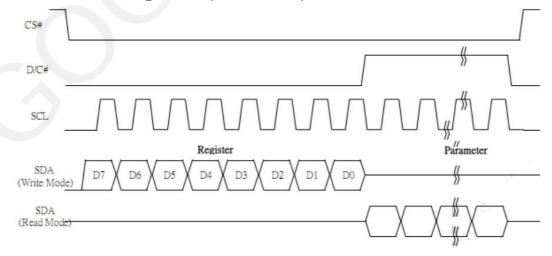


Figure 3.5.2-2: Read procedure in 4-wire SPI mode

3.5.3 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 3.5.3-3.

Table 3.5.3-3 : Co	ntrol pins statu	s of 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command	Tie LOW	L
Write data	↑	Data bit	Tie LOW	Ļ

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) † stands for rising edge of signal

In the write operation, a 9-bit data will be shifted into the shift register on each clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. shows the write procedure in 3-wire SPI

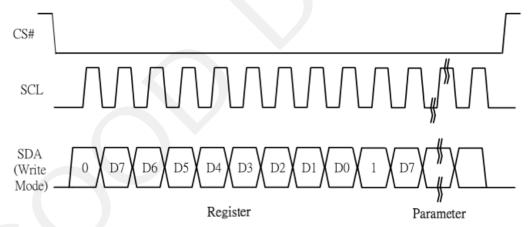


Figure 3.5.3-3: Write procedure in 3-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. D/C#=0 is shifted thru SDA with one rising edge of SCL
- 3. SDA is shifted into an 8-bit shift register on each rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C#=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on each falling edge of SCL in the order of D7, D6, ... D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

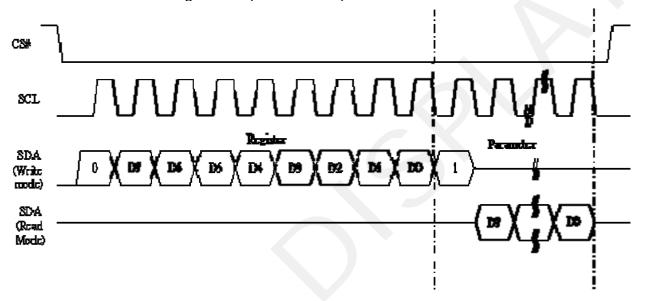


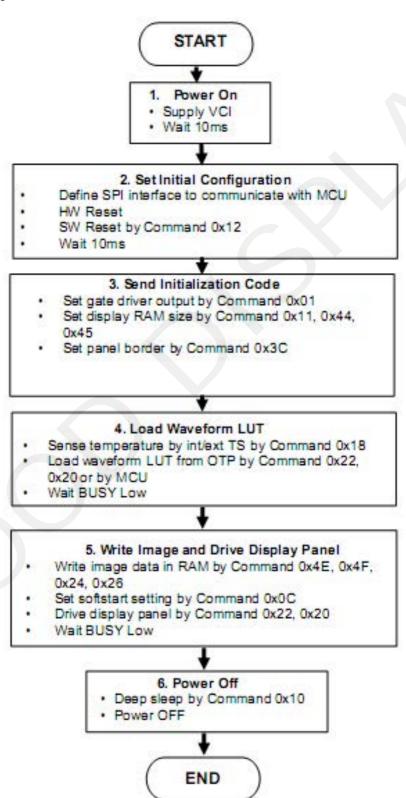
Figure 3.5.3-3: Read procedure in 3-wire SPI mode

3.6 Temperature sensor operation

Following is the way of how to sense the ambient temperature of the module. First, use an external temperature sensor to get the temperature value and converted it into HEX format with below mapping table, then send command 0x1A with the HEX temperature value to the module thru the SPI interface.

The temperature value to HEX conversion is as follow:

- 1. If the Temperature value MSByte bit D11 = 0, then
- 2. The temperature is positive and value (DegC) = + (Temperature value) / 16
- 3. If the Temperature value MSByte bit D11 = 1, then
- 4. The temperature is negative and value (DegC) = \sim (2's complement of Temperature value) /16


Table 3.6-1: Example of 12-bit binary temperature settings for temperature ranges

12-bit binary (2's complement)	Hexadecimal Value	TR Value [DegC]
0111 1111 1111	7FF	128
0111 1111 1111	7FF	127.9
0110 0100 0000	640	100
0101 0000 0000	500	80
0100 1011 0000	4B0	75
0011 0010 0000	320	50
0001 1001 0000	190	25
0000 0000 0100	004	0.25
0000 0000 0000	000	0
1111 1111 1100	FFC	-0.25
1110 0111 0000	E70	-25
1100 1001 0000	C90	-55

4 Typical Operating Sequence

4.1 Normal Operation Flow

5. COMMAND TABLE

Con	ommand Table														
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti			
0	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	Ao	1		27h [POR]		
0	1		0	0	0	0	0	0	0	A 8		MUX Gat	e lines set	ting as (A	[8:0] + 1).
0	1		0	0	0	0	0	0 B ₂	0 B ₁	As Bo		B[2:0] = 0 Gate scar B[2]: GD Selects th GD=0 [PC G0 is the output sec GD=1, G1 is the output sec SM=0 [PC G0, G1, Co interlaced SM=1, G0, G2, C B[0]: TB	nning sequence is quence is canning of DR],	uence and out Gate output cha G0,G1, G output cha G1, G0, C order of ga 95 (left and	nnel, gate 2, G3, nnel, gate 63, G2, te driver. d right gate
													can from C		
				1					1						
0	0 1	03	0 0	0 0	0 0	0 A4	0 A ₃	0 A2	1 A ₁		Gate Driving voltage Control	A[4:0] = 0	driving vo Oh [POR] Ing from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5 13 13.5 14 14.5		VGH 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 NA

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	04	0	0	0	0	0	1	0	0	Source Driving voltage	Set Source driving voltage
0	1		A ₇	A 6	A 5	A ₄	Аз	A ₂	A ₁	A ₀		A[7:0] = 41h [POR], VSH1 at 15V
0	1		B ₇	B ₆	B 5	B ₄	Вз	B ₂	Вı	Bo		B[7:0] = A8h [POR], VSH2 at 5V. C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C ₆	C 5	C ₄	Сз	C ₂	C ₁	C ₀		Remark: VSH1>=VSH2
Λ[7	1/D[7]	_ 1	-		-			Λ [-	71/D[7	1 0	-	C[7] 0

A[7]/B[7] = 1, VSH1/VSH2 voltage setting from 2.4V to 8.8V

VSH1/VSH2 A/B[7:0] A/B[7:0] VSH1/VSH2 8Eh AFh 5.7 8Fh 2.5 B0h 5.8 B1h 90h 2.6 5.9 6 B3h 92h 2.8 6.1 93h 2.9 B4h 6.2 94h 3 B5h 6.3 95h 3.1 B6h 6 4 96h 3.2 B7h 6.5 97h 3.3 B8h 6.6 98h 3.4 B9h 6.7 99h 3.5 BAh 6.8 9Ah 3.6 BBh 6.9 9Bh 3.7 BCh BDh 9Ch 3.8 7.1 9Dh 3.9 BEh 7.2 9Eh 4 BFh 7.3 9Fh 4.1 C0h 7.4 C1h A0h 4.2 7.5 C2h 4.3 7.6 A1h A2h 4.4 C3h 7.7 A3h 4.5 C4h 7.8 A4h 4.6 C5h 7.9 C6h A5h 4.7 8 A6h 4.8 C7h 8.1 A7h 4.9 C8h 8.2 A8h 5 C9h 8.3 A9h 5.1 CAh 8.4 CBh AAh 5.2 8.5 ABh 5.3 CCh 8.6 ACh 5.4 CDh 8.7 CEh ADh 5.5 8.8 AEh 5.6 Other NA

A[7]/B[7] = 0,

VSH1/VSH2 voltage setting from 9V to 17V

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2
23h	9	3Ch	14
24h	9.2	3Dh	14.2
25h	9.4	3Eh	14.4
26h	9.6	3Fh	14.6
27h	9.8	40h	14.8
28h	10	41h	15
29h	10.2	42h	15.2
2Ah	10.4	43h	15.4
2Bh	10.6	44h	15.6
2Ch	10.8	45h	15.8
2Dh	11	46h	16
2Eh	11.2	47h	16.2
2Fh	11.4	48h	16.4
30h	11.6	49h	16.6
31h	11.8	4Ah	16.8
32h	12	4Bh	17
33h	12.2	Other	NA
34h	12.4		
35h	12.6		
36h	12.8		
37h	13		
38h	13.2		
39h	13.4		
3Ah	13.6		
3Bh	13.8		

C[7] = 0,

VSL setting from -5V to -17V

C[7:0]	VSL
0Ah	-5
0Ch	-5.5
0Eh	-6
10h	-6.5
12h	-7
14h	-7.5
16h	-8
18h	-8.5
1Ah	-9
1Ch	-9.5
1Eh	-10
20h	-10.5
22h	-11
24h	-11.5
26h	-12
28h	-12.5
2Ah	-13
2Ch	-13.5
2Eh	-14
30h	-14.5
32h	-15
34h	-15.5
36h	-16
38h	-16.5
3Ah	-17
Other	NA

0	0	08	0	0	0	0	1	0	0		OTP Program	Program Initial Code Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	n	09	0	0	0	0	1	0	0	1	Write Register for Initial	Write Register for Initial Code Setting
0	1	00	A ₇	A ₆	A ₅	A ₄	Aз	A ₂	A ₁		Code Setting	Selection
0	1		B ₇	B ₆	B ₅	В ₄	Вз	B ₂	B ₁	Bo		A[7:0] ~ D[7:0]: Reserved
	'										4	Details refer to Application Notes of Initial
0	1		C ₇	C_6	C ₅	C ₄	Сз	C_2	C ₁	Co		Code Setting
0	1		D ₇	D_6	D ₅	D ₄	Dз	D_2	D ₁	D_0		
0	0	0A	0	0	0	0	1	0	1		Read Register for Initial Code Setting	Read Register for Initial Code Setting

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start		Phase 1, Phase 2 and Phase 3
0	1		1	A 6	A 5	A ₄	Аз	A ₂	A 1	A ₀	Control	for soft start current	and duration setting.
0	1		1	B ₆	B ₅	B ₄	Вз	B ₂	Вı	Bo	1	A[7:0] -> Soft start s = 8Bh [PC	setting for Phase1
0	1		1	C ₆	C 5	C ₄	Сз	C ₂	C ₁	Co	1	= 8Bh [PC B[7:0] -> Soft start s	OR] setting for Phase2
0	1		0	0	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	1	= 9Ch [PC	OR]
	•		ľ		Do	J-1						C[7:0] -> Soft start s = 96h [PC	setting for Phase3 DRI
												D[7:0] -> Duration s = 0Fh [PC	etting
												Bit Description A[6:0] / B[6:0]	n of each byte: / C[6:0]:
												Bit[6:4]	Driving Strength Selection
												000	1(Weakest)
												001	2
												010	3
												011	4
												100	5
												101	6
												110	7
												111	8(Strongest)
									4			Bit[3:0]	Min Off Time Setting of GDR [Time unit]
												0000	NA
												0011	1471
												0100	2.6
												0101	3.2
												0110	3.9
												0111	4.6
												1000	5.4
												1001	6.3
												1010	7.3
												1011	8.4
												1100	9.8
												1101	11.5
												1110	13.8
												1111	16.5
												D[5:4]: durati D[3:2]: durati	on setting of phase ion setting of phase 3 ion setting of phase 2
													ion setting of phase 1 Duration of Phase
												Bit[1:0]	[Approximation]
												00	10ms
												01	20ms
												10	30ms
I												11	40ms

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	10	0	0	0	1 0	0	0	0 A1	O Ao	Deep Sleep mode	Deep Sleep mode Control: A[1:0]: Description 00 Normal Mode [POR] 01 Enter Deep Sleep Mode 1 11 Enter Deep Sleep Mode 2 After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark: To Exit Deep Sleep mode, User required to send HWRESET to the driver
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1	1	0	0	0	0	0	A2	A1	Ao	Data Entry mode Setting	A[2:0] = 011 [POR] A[1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 - Y decrement, X decrement, 01 - Y decrement, X increment, 10 - Y increment, X increment, 11 - Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection
	J	1-7	O			'		'		ľ	Try reday beledien	A[7:0] = 00h [POR]
												The command required CLKEN=1 and
												ANALOGEN=1.
												Refer to Register 0x22 for detail.
												After this command initiated, HV Ready
												detection starts.
												BUSY pad will output high during
												detection. The detection result can be read from the
	4		•									Status Bit Read (Command 0x2F).
0	1		0	A 6	A 5	A ₄	0	A_2	A ₁	A ₀		A[6:4]=n for cool down duration:
												10ms x (n+1)
												A[2:0]=m for number of Cool Down Loop to detect.
												The max HV ready duration is
												10ms x (n+1) x (m)
												HV ready detection will be trigger after
												each cool down time. The detection will be
												completed when HV is ready.
												For 1 shot HV ready detection, A[7:0] can
												be set as 00h.
	_	4.5	0	^	_	1 4	_	4	0	1	VCI Detection	VCI Detection
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection A[2:0] = 100 [POR] , Detect level at 2.3V
0	1		0	0	0	0	0	A_2	A ₁	A_0		A[2:0] : VCI level Detect
												A[2:0] VCI level
												011 2.2V
												100 2.3V
												101 2.4V
												110 2.5V
												111 2.6V
												Other NA
												Other INA
												The command required CLKEN=1 and
												ANALOGEN=1
												Refer to Register 0x22 for detail.
												After this command initiated, VCI
												detection starts.
			•									BUSY pad will output high during
												detection.
												The detection result can be read from the
												Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1	10	A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	Control	A[7:0] = 48h [POR], external temperatrure
	'		, ,,	, 10	, 13	, \ -	, 13	, 14	' '			sensor
												A[7:0] = 80h Internal temperature sensor
	Λ	1 1	0	0	0	1	1	0	1	<u> </u>	Tomporatura Canaar	Write to temperature register
0	1	1A	0 A ₁₁	0 A ₁₀	0 A ₉	1 A ₈	1 A ₇	0 A ₆	1 A ₅	0 A ₄	Temperature Sensor Control (Write to	Write to temperature register. A[11:0] = 7FFh [POR]
0	1		A ₁₁	A ₁₀	A ₉	A ₀	0	0	0	0	temperature register)	[[[[] [] [] [] [] [] [] [] [
U	ı		<i>1</i> 1√3	<i>I</i> 12	1 1	Λ0	U	U	U	U	tomperature register)	

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description			
0	0	1B	0								Temperature Sensor	Read from temperature register.			
1	1		A ₁₁	A ₁₀	A 9	A 8	A ₇	A ₆	A 5	A ₄	Control (Read from				
1	1		Аз	A_2	A ₁	A_0	0	0	0	0	temperature register)				
0	Λ	1C	0	Λ	0	1	1	1	Λ	0	Tomporatura Sanaar	Write Command to External temporature			
0	0	10	A ₇	0 A ₆	A ₅	1 A ₄	1 Аз	1 A ₂	0 A ₁	0 A ₀	Temperature Sensor Control (Write Command	Write Command to External temperature sensor.			
<u> </u>						_					to External temperature	A[7:0] = 00h [POR],			
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B₁	B ₀	sensor)	B[7:0] = 00h[POR],			
0	1		C ₇	C_6	C 5	C ₄	Сз	C_2	C ₁	Co		C[7:0] = 00h [POR],			
												A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 10 Address + pointer + 1st parameter 11 Address A[5:0] Pointer Setting B[7:0] - 1 st parameter C[7:0] - 2 ^{rtu} parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sensor starts. BUSY pad will output high during operation.			
	_	00	0	0	4	_	0	_	0	_	In A - a to a A - a' - a t' - a	Notice of Birelanda Linda Communication			
0	0	20	0	0	1	0	0	0	0	0	Master Activation				
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display Update			
0	1	-1	A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	1				
L .			, ··· <	, 10	7 10	, (7 10	,			ľ	A[7:0] = 00h [POR] B[7:0] = 00h [POR]			
0	1		B ₇	0	0	0	0	0	0	0		A[7:4] Red RAM option 0000			

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Opti	on:
0	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	A ₀	Control 2	Enable the stage for Master Ac A[7:0]= FFh (POR)	tivation
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal Enable Analog	CO
												Disable Analog Disable clock signal	03
												Enable clock signal Load LUT with DISPLAY Mode 1 Disable clock signal	91
												Enable clock signal Load LUT with DISPLAY Mode 2 Disable clock signal	99
												Enable clock signal Load temperature value Load LUT with DISPLAY Mode 1 Disable clock signal	B1
												Enable clock signal Load temperature value Load LUT with DISPLAY Mode 2 Disable clock signal	В9
												Enable clock signal Enable Analog Display with DISPLAY Mode 1 Disable Analog Disable OSC	C7
												Enable clock signal Enable Analog Display with DISPLAY Mode 2 Disable Analog Disable OSC	CF
												Enable clock signal Enable Analog Load temperature value DISPLAY with DISPLAY Mode 1 Disable Analog Disable OSC	F7
												Enable clock signal Enable Analog Load temperature value DISPLAY with DISPLAY Mode 2 Disable Analog Disable OSC	FF
												_	
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entries written into the BW RAM until a command is written. Address padvance accordingly	nother
												For Write pixel: Content of Write RAM(BW) = 7 For Black pixel: Content of Write RAM(BW) = 6	

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the
	0	21	0	0	-	0		'	'	'	IVeau IVAIVI	MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The 1 st byte of data read is dummy data.
			_		_							
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during operation.
	1		_	_				-			l	I
0	1	29	0	1	0	0	1 A ₃	0 A ₂	0 A1	A ₀	VCOM Sense Duration	Stabling time between entering VCOM sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
	J	2 A	V	J	1	V	1		1	U	i Togram VOOWIOTF	The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
0	1		0	0	0	0	0	1	0	0	Control	when ACVCOM toggle. Two data bytes D04h and D63h should be set for this
0	1		0	1	1	0	0	0	1	1		D04h and D63h should be set for this command.

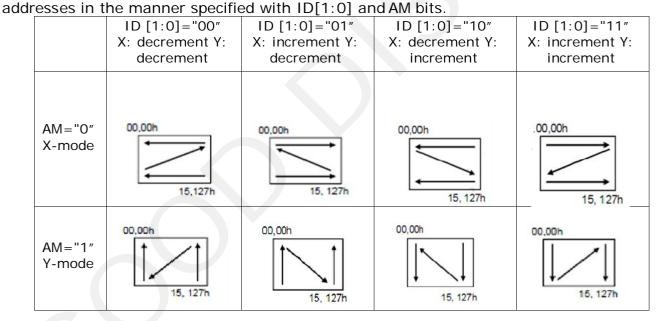
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descrip	tion		
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	Write VC	OM registe	er from M	CU interface
0	1	,	A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	Ao	J		00h [PŎR]		
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
0	0	2D	0	0	1	0	1	1	0		OTP Register Read for	Read R	egister for	Display C	Option:
1	1		A ₇	A_6	A_5	A_4	Аз	A_2	A ₁	A_0	Display Option	Λ[7,0], Y	VСОМ ОТ	D Colootia	n .
1	1		B ₇	B_6	B ₅	B ₄	Вз	B ₂	Βı	Bo			and 0x37,		ווכ
1	1		C 7	C ₆	C 5	C ₄	Сз	C ₂	C ₁	Co		(00111111	ana oxor,	Dylo / l)	
1	1		D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	Do			VCOM Reg		
1	1		E ₇	E ₆	E 5	E ₄	Ез	E ₂	Εı	Eo		(Comm	and 0x2C)		
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F₁	Fo		C[7:0]~	G[7:0]: Dis	play Mod	е
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go			and 0x37,		
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	Ηı	Н₀		[5 bytes	s]	•	
1	1		I ₇	l 6	I 5	I ₄	l ₃	l ₂	I ₁	lo		H[Z:0]~	K[7:0]: Wa	veform \/	areion
1	1		J ₇	J_6	J 5	J_4	J ₃	J_2	J ₁	J ₀			and 0x37,		
1	1		K ₇			K ₄			K ₁			[4 bytes		,	<i>y y</i>
<u> </u>							0					1.2,100	· .		
0	0	2E	0	0	1	0	1	1	1	0	User ID Read		Byte User		
1	1	7	A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	A ₀				rID (R38,	Byte A and
1	1		В7	B ₆	B 5	B ₄	Вз	B ₂	Bı	Bo		Byte J)	[10 bytes]		
1	1		C ₇	C ₆	C 5	C ₄	С3	C ₂	C ₁	Co					
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D1	D ₀					
1	1		E ₇	E ₆	E 5	E ₄	Ез	E ₂	Εı	Εo					
1	1		F ₇	F ₆	F ₅	F ₄	Fз	F ₂	F ₁	F ₀					
1	1		G7	G_6	G ₅	G ₄	G ₃	G ₂	G ₁	Go					
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H₁	Ho					
1	1		I ₇	l 6	I 5	I 4	l ₃	l ₂	Ī ₁	lo					
1	1		J_7	J_6	J 5	J_4	J ₃	J_2	J ₁	J ₀					
												•			

R/W#			D7	D6	D5	D4	D3	D2	D1	-	Command	Description
0 1	0	2F	0	0	1 A ₅	0 A ₄	1 0	0	1 A ₁	1 Ao	Status Bit Read	Read IC status Bit [POR 0x01] A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by
												command 0x14 and command 0x15 respectively.
				_			_				14711 5 11 1 5 1	
0	0 1	37	0 A ₇	0	0	1	0	0	0		Write Register for Display Option	Write Register for Display Option A[7] Spare VCOM OTP selection
						0					Option	0: Default [POR]
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		1: Spare
0	1		C ₇	C ₆	C ₅	C ₄	C₃ D₃	C ₂	C ₁	C ₀		B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		C[7:0] Display Mode for WS[7:0]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	F ₀		D[7:0] Display Mode for WS[23:16]
0	1		G ₇	G ₆	G₅	G ₄	G₃	G ₂	G ₁	G ₀		E[7:0] Display Mode for WS[31:24] F[3:0 Display Mode for WS[35:32]
0	1		H ₇	H ₆	H₅	H ₄	H₃	H ₂	H₁	H₀		0: Display Mode 1
0	1		I 17 I ₇	I ₆	1 15	114	I ₃	112	111	lo		1: Display Mode 2
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀		F[6]: PingPong for Display Mode 2 0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1
								•	•	•	Marie Desire (11 15	Maria Basistan (ad Hara 12
0	0	38	0	0	1	1	1	0	0		vvrite Register for User ID	Write Register for User ID A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		A ₇	A ₆	A 5	A ₄	A ₃	A ₂	A ₁	A ₀		, it is a solution of the system
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		Remarks: A[7:0]~J[7:0] can be stored in
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		OTP
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	D ₁	E ₀		
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀		
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description					
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H₁	H₀							
0	1		I ₇	l 6	I 5	I 4	lз	l ₂	I ₁	l o							
0	1		J_7	J 6	J 5	J_4	Jз	J_2	J ₁	J_0							
					T	T			T								
0	0	3C	0	0	1	1	1	1	0		Border Waveform Control	Select border waveform for VBD					
0	1		A 7	A_6	A 5	A_4	0	A_2	A ₁	Αo		A[7:0] = C0h [POR], set VBD as HIZ. A [7:6] :Select VBD option					
												A[7:6] Select VBD option A[7:6] Select VBD as					
												00 GS Transition,					
												Defined in A[2] and					
												A[1:0]					
												01 Fix Level,					
												Defined in A[5:4] 10 VCOM					
												11[POR] HiZ					
												11[1 011]					
												A [5:4] Fix Level Setting for VBD					
												A[5:4] VBD level					
												00 VSS					
												01 VSH1 10 VSL					
												10 VSL 11 VSH2					
												VOLIZ					
												A[2] GS Transition control					
												A[2] GS Transition control					
												0 Follow LUT					
											· ·	(Output VCOM @ RED) 1 Follow LUT					
							4					1 TOHOW EST					
												A [1:0] GS Transition setting for VBD					
												A[1:0] VBD Transition					
												00 LUT0					
												01 LUT1 10 LUT2					
												11 LUT3					
									<u> </u>								
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM Option					
0	1		0	0	0	0	0	0	0	A ₀	'	A[0]= 0 [POR]					
												0 : Read RAM corresponding to RAM0x24					
					<u> </u>	<u> </u>			<u> </u>	<u> </u>		1 : Read RAM corresponding to RAM0x26					
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the start/end positions of the					
0	1		0	0	A ₅	A ₄	Аз	A ₂	A ₁		Start / End position	window address in the X direction by an					
0	1		0	0	B ₅	B ₄	Вз	B ₂	Bı	Bo	,	address unit for RAM					
	'		U		٥٥	40 ا	3ن	∠ن	וכן	٥٥		ALE-OF ACATE-OF ACATE DOD COL					
												A[5:0]: XSA[5:0], XStart, POR = 00h B[5:0]: XEA[5:0], XEnd, POR = 15h					
												ρ[σ.σ]. ΛΕΛ[σ.σ], ΛΕΠα, F ΟΙΧ = 10Π					
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the start/end positions of the					
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁		Start / End position	window address in the Y direction by an					
0	1		0	0	0	0	0	0	0	A ₈		window address in the Y direction by an address unit for RAM					
												A[0,0], VCA[0,0], VC4					
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		A[8:0]: YSA[8:0], YStart, POR = 000h					
0	1		0	0	0	0	0	0	0	B ₈		B[8:0]: YEA[8:0], YEnd, POR = 127h					

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM for	-		M for Rea	ular Pattern
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁		Regular Pattern	A[7:0] = 0		9	attorii
	•		, ,	710	713	7 (4	0	7.2	741	710	rtegular r altern	A[7]: The A[6:4]: Ste	1st step va ep Height,	POR= 00	
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
												to Source	ter RAM in	X-direction	on according
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	176
												010 011	32 64	110 111	NA NA
												011	04	111	INA
												BUSY pacton.		ut high du	ring
			_	_		_	_				I	T			
0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for			M for Regi	ular Pattern
0	1		A ₇	A ₆	A 5	A ₄	0	A ₂	A ₁	Ao	Regular Pattern	A[7:0] = 0	Oh [POR]		
												A[7]: The A[6:4]: Ste Step of all to Gate	ep Height,	POR= 00	
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
												A[2:0]: Ste Step of alt to Source A[2:0] 000 001 010 011 During op high.	Width 8 16 32 64	A[2:0] 100 101 110 111	Width 128 176 NA NA

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initial settings for the RAM X
0	1		0	0	A 5	A ₄	Аз	A ₂	A ₁	A ₀	counter	address in the address counter (AC) A[5:0]: 00h [POR].
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initial settings for the RAM Y
0	1		A ₇	A ₆	A 5	A ₄	Аз	A_2	A ₁	A ₀	counter	address in the address counter (AC)
0	1		0	0	0	0	0	0	0	A 8	1	A[8:0]: 000h [POR].
0	0	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands.


6. Data Entry Mode Setting (11h)

This command has multiple configurations and each bit setting is described as follows:

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1						AM	ID1	IDO
РО	POR		0	0	0	0	0	1	1

ID[1:0]: The address counter is automatically incremented by 1, after data is written to the RAM when ID[1:0] = "01". The address counter is automatically decremented by 1, after data is written to the RAM when ID[1:0] = "00". The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. The direction of the address when data is written to the RAM is set by AM bits.

AM: Set the direction in which the address counter is updated automatically after data are written to the RAM. When AM = "0", the address counter is updated in the X direction. When AM = "1", the address counter is updated in the Y direction. When window addresses are selected, data are written to the RAM area specified by the window

The pixel sequence is defined by the ID [0],

	ID [1:0]="00" X: decrement Y: decrement	D [1:0]="01" X: increment Y: decrement				
AM="0" X-mode	43, 2, 1 15, 127 h	00,00h 1.2.3.4				

7. Optical characteristics

7.1 Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

T=25℃

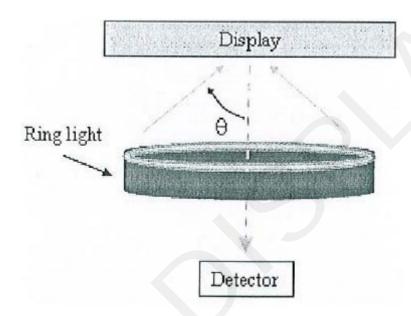
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT	Note
R	Reflectance	White	30	35	-	%	Note 7.1-1
Gn CR	2Grey Level Contrast Ratio Black State L* value	- -	- 10 -	DS+(WS-DS)×n(m-1) 15 13	- - 14	L*	- - Note 7.1-1
KS WS	Black State a* value White State L* value		- 63	3 65	4 -		Note 7.1-1 Note 7.1-1
RS	Red State L* value Red State a* value	Red Red	25 36	28 40	-		Note 7.1-1 Note 7.1-1
Panel's life	-	0°C∼40°C		5years	-	-	Note 7.1-2
Panel	Image Update	Storage and transportation	-	Update the white screen	-	-	-
	Update Time	Operation	-	Suggest Updated once a day	-	-	-

WS: White state, KS: Black state, RS: Red state

Note 7.1-1: Luminance meter: i - One Pro Spectrophotometer

Note 7.1-2: We don't guarantee 5 years pixels display quality for humidity below 45%RH or above 70%RH;

Suggest Updated once a day;

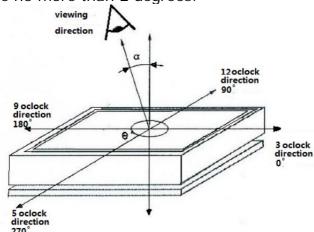


7.2 Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (R1) and the reflectance in a dark area (Rd)():

R1: white reflectance Rd: dark reflectance

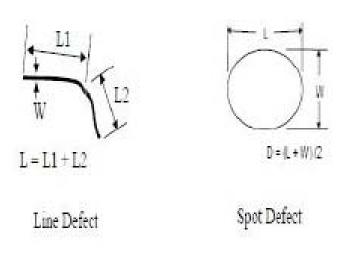
CR = R1/Rd



7.3 Reflection Ratio

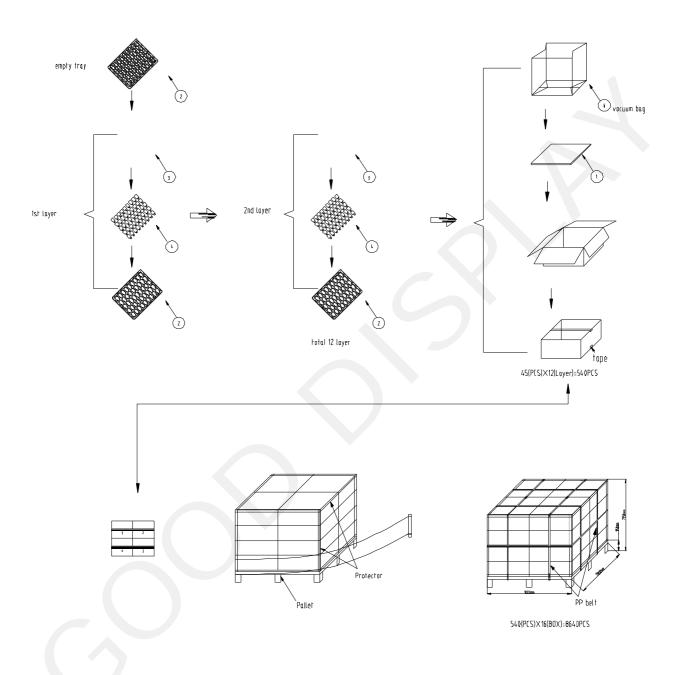
The reflection ratio is expressed as:

R = Reflectance Factor white board x (L center / L white board)


L $_{center}$ is the luminance measured at center in a white area (R=G=B=1). L $_{white\ board}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

8. Point and line standard

	Shipmen	t Inspection	Standard				
	Equipment: Elec	ctrical test fixt	ure, Point gaug	е			
Outline dimension	29.2(H)×59.2(V)×0.9(D)	Unit: mm	Part-A	Active area	Part-B	Border area	
Environment	Temperature	Humidity	Illuminance	Distance	Time	Angle	
	19℃~25℃	55%±5%RH	800~1300Lux	300 mm	35Sec		
Defect type	Inspection method	Sta	Part-A		Part-B		
		D≤0.25 mm		Ignore		Ignore	
Spot	Electric Display	0.25 mm <d≤0.4 mm<="" td=""><td colspan="2">N≤4</td><td>Ignore</td></d≤0.4>		N≤4		Ignore	
		D>0.4 mm		Not Allow		Ignore	
Display unwork	Electric Display	Not	Not Allow		Ignore		
Display error	Electric Display	Not	Allow	Not Allow		Ignore	
Scratch or line defect (include dirt)	Visual/Film card	L≤2 mm, W≤0.2 mm		Ignore		Ignore	
		2.0mm <l≤5.0mm, 0.2<w≤ 0.3mm,<="" td=""><td colspan="2">N≤2</td><td>Ignore</td></w≤></l≤5.0mm, 		N≤2		Ignore	
		L>5 mm,	Not Allow		Ignore		
	Visual/Film card	D≤0.2mm		Ignore		Ignore	
PS Bubble		0.2mm≤D≤0.35mm & N≤4		N≤4		Ignore	
		D>0	Not Allow		Ignore		
	Visual/Film card	X≤6mm, Y≤0.4mm, Do not affect the electrode circuit (Edge chipping) X≤1mm, Y≤1mm, Do not affect the electrode circuit((Corner chipping) Ignore					
Side Fragment		X X X					
	1.Cannot be defect & failure cause by appearance defect;						
Remark	2.Cannot be larger size cause by appearance defect;						
	L=long W=wide D=point size N=Defects NO						


L=long

W=wide

D=point size

9. Packing

10. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL /EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.
- (7) For more precautions, please click on the link: http://www.good-display.com/news/Precautions-for-E-paper-Display-80.html