

E-paper Display Series

GDEY029T94

Dalian Good Display Co., Ltd.

Product Specifications

Customer	Standard		
Description	2.9" E-PAPER DISPLAY		
Model Name	GDEY029T94		
Date	2021/03/15		
Revision	1.0		

Design Engineering				
Approval Check Design				
宝刘印玉	之温印馨	之对		

Zhongnan Building, No.18, Zhonghua West ST, Ganjingzi DST, Dalian, CHINA

Tel: +86-411-84619565

Email: info@good-display.com Website: www.good-display.com

REVISION HISTORY

Rev	Date	Item	Page	Remark
1.0	MAR.15.2021	New Creation	ALL	

CONTENTS

1.	Over View 6
2.	Features 6
3.	Mechanical Specification 6
4.	Mechanical Drawing of EPD Module7
5.	Input/output Pin Assignment 8
6.	Electrical Characteristics
	6.1 Absolute Maximum Rating
	6.2 Panel DC Characteristics
	6.3.1 MCU Interface Selection
	6.3.2 MCU Serial Interface (4-wire SPI)
	6.3.3 MCU Serial Interface (3-wire SPI)
	6.3.4 Interface Timing
7.	Command Table14
8.	Optical Specification
9.	Handling, Safety, and Environment Requirements 26
10.	Reliability Test27

11.	Block Diagram	28
12.	Reference Circuit	29
13.	Matched Development Kit	30
14.	Typical Operating Sequence	
	14.1 Normal Operation Flow	31
15.	Inspection condition	32
	15.1 Environment	32
	15.2 Illuminance	32
	15.3 Inspect method	32
	15.4 Display area	32
	15.5 Inspection standard	33
	15.5.1 Electric inspection standard	33
	15.5.2 Appearance inspection standard	34
16.	Packaging	36
17.	Precautions	37

1. Over View

GDEY029T94 is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black full display capabilities. The 2.9 inch active area contains 296×128 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2.Features

296×128 pixels display High cntrast High reflectance Ultra wide viewing angle Ultra low power consumption Pure reflective mode

Bi-stable display

Commercial temperature range

Landscape portrait modes

Hard-coat antiglare display surface

Ultra Low current deep sleep mode

On chip display RAM

Waveform can stored in On-chip OTP or written by MCU

Serial peripheral interface available

On-chip oscillator

On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage

I2C signal master interface to read external temperature sensor Built-in temperature sensor

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.9	Inch	
Display Resolution	296 (H)×128(V)	Pixel	Dpi:125
Active Area	29.056(H)×66.896(V)	mm	
Pixel Pitch	0.227×0.226	mm	
Pixel Configuration	Rectangle		
Outline Dimension	36.7(H)×79.0(V) ×1.2(D)	mm	
Weight	5.5±0.5	g	

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	Ι	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	О	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I/O	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	C	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	
20	VSH1	С	Positive Source driving voltage	
21	VGH	C	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	C	VCOM driving voltage	

I = Input Pin, O = Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU

communication only when CS# is pulled LOW.

Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When

the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when –Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. Electrical Characteristics

6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +4.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	° C
Optimal Storage Temp	TSTGo	23±2	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note:

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Parameter	Symbol	Conditions	Applica ble pin	Min.	Typ.	Max	Units
Single ground	V _{SS}	-		-	0	-	V
Logic supply voltage	$V_{\rm CI}$	-	VCI	2.2	3.0	3.7	V
Core logic voltage	$V_{ m DD}$		VDD	1.7	1.8	1.9	V
High level input voltage	V _{IH}	-		0.8 V _{CI}		-	V
Low level input voltage	V _{IL}	-		-		0.2 V _{CI}	V
High level output voltage	V _{OH}	IOH = - 100uA		0.9 VCI	9	-	V
Low level output voltage	V _{OL}	IOL = 100uA				$0.1~V_{\rm CI}$	V
Typical power	P _{TYP}	$V_{CI}=3.0V$			4		mW
Deep sleep mode	P _{STPY}	$V_{CI}=3.0V$			0.003		mW
Typical operating current	Iopr_V _{CI}	V _{CI} =3.0V		-	3.0		mA
Full update time		25 °C			3		sec
Fast update time	-	25 °C			1.5		sec
Partial refresh time		25 °C			0.3		sec
Sleep mode current	Islp_V _{CI}	DC/DC off No clock No input load Ram data retain			20		uA
Deep sleep mode current	Idslp_V _{CI}	DC/DC off No clock No input load Ram data not retain	-	-	1	5	uA

Notes:

- 1) Refresh time: the time it takes for the whole process from the screen change to the screen stabilization.
- 2) The difference between different refresh methods:

Full refresh: The screen will flicker several times during the refresh process;

Fast Refresh: The screen will flash once during the refresh process;

Partial refresh: The screen does not flicker during the refresh process.

During the fast refresh or partial refresh of the electronic paper, it is recommended to add a full-screen refresh after 5 consecutive operations to reduce the accumulation of afterimages on the screen.

- 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.
- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by GOOD DISPLAY.

6.3 Panel AC Characteristics

6.3.1 MCU Interface Selection

The pin assignment at different interface mode is summarized in Table 6-4-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name	Data/Comma	nd Interface		Control Signa	l
Bus interface	SDA	SCL	CS#	D/C#	RES#
BS1=L 4-wire SPI	SDA	SCL	CS#	D/C#	RES#
BS1=H 3-wire SPI	SDA	SCL	CS#	L	RES#

6.3.2 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

Function	CS#	D/C#	SCL
Write command	L	L	1
Write data	L	Н	1

Note: ↑ stands for rising edge of signal

In the write mode SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM /Data Byte register or command Byte register according to D/C# pin.

Figure 6-1: Write procedure in 4-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

Figure 6-2: Read procedure in 4-wire SPI mode

6.3.3 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

Function	CS#	D/C#	SCL
Write command	L	Tie	†
Write data	L	Tie	†

Note: † stands for rising edge of signal

Figure 6-3: Write procedure in 3-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. D/C=0 is shifted thru SDA with one rising edge of SCL
- 3. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

Figure 6-4: Read procedure in 3-wire SPI mode

6.3.4 Interface Timing

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Serial Interface Timing Characteristics

 $(VCI - VSS = 2.2V \text{ to } 3.7V, TOPR = 25^{\circ}C, CL=20pF)$

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Write Mode)			20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	65			ns
t _{сsніgн}	Time CS# has to remain high between two transfers	100			ns
t _{scl} eigh	Part of the clock period where SCL has to remain high	25			ns
tscllow	Part of the clock period where SCL has to remain low	25			ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tsiHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Read Mode)			2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	50			ns
tcsнigh	Time CS# has to remain high between two transfers	250			ns
tsclHigh	Part of the clock period where SCL has to remain high	180			ns
tscllow	Part of the clock period where SCL has to remain low	180			ns
t _{sosu}	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tsohld	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

7. Command Table

Com	man	d Tal	ble												
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti	ng		
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀		A[8:0]= 12			
0	1		0	0	0	0	0	0	0			MUX Gate	e lines set	tting as (A	[8:0] + 1).
0	1		0	0	0	0	0	B ₂	0 B ₁	A ₈ B ₀		B[2:0] = 0 Gate scar B[2]: GD Selects th GD=0 [PC G0 is the output sec GD=1, G1 is the output sec B[1]: SM Change si SM=0 [PC	00 [POR] nning sequence is 1st gate of quence is canning coor, 62, G32	out Gate butput cha G0,G1, G butput cha G1, G0, C	nnel, gate 2, G3, nnel, gate 33, G2,
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	B[0]: TB TB = 0 [P0 TB = 1, so	OR], scar can from (driving vo	from G0 G295 to G	
0	1		0	0	0	A_4	A ₃	A ₂	A ₁	A ₀	Control	A[4:0] = 0 VGH setti			
												A[4:0]	VGH	A[4:0]	VGH
												00h	20	0Dh	15
												03h	10	0Eh	15.5
												04h	10.5	0Fh	16
												05h	11	10h	16.5
												06h	11.5	11h	17
												07h	12	12h	17.5
												08h	12.5	13h	18
												07h	12	14h	18.5
												08h	12.5	15h	19
												09h	13	16h	19.5
												0Ah	13.5	17h	20
												0Bh	14	Other	NA NA
												0Ch	14.5	Otrici	IVA
												0011	17.0		

Com	man	d Tal	ble											
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Comn	nand		Description
0	0	04	0	0	0	0	0	1	0	0	Source	e Driving	voltage	Set Source driving voltage
0	1	-	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Contro		ronago	A[7:0] = 41h [POR], VSH1 at 15V
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	1			B[7:0] = A8h [POR], VSH2 at 5V.
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	1			C[7:0] = 32h [POR], VSL at -15V
	16	- 1	C/	C 6	U ₅	U 4	U 3		7]/B[7					Remark: VSH1>=VSH2 C[7] = 0,
VSI]/B[7] H1/V\$	– 1, SH2 \	oltag	e se	tting	from	2.4V					e setting	from 9V	VSL setting from -5V to -17V
to 8	.8V		0.00					to	17V					
_	B[7:0] 8Eh	_	1/VSH2 2.4	_	[7:0] Fh	_	/VSH2 .7	/	A/B[7:0] 23h	VS	H1/VSH2	A/B[7:0] 3Ch	VSH1/VSH	-[]
	8Fh	_	2.5	_	0h		.8		24h		9.2	3Dh	14.2	0Ah -5 0Ch -5.5
	90h		2.6		1h		.9		25h	\perp	9.4	3Eh	14.4	0Eh -6
	91h 92h	_	2.7	_	3h	_	.1	\vdash	26h 27h	+	9.6	3Fh 40h	14.6 14.8	10h -6.5
	93h		2.9		14h		.2		28h		10	41h	15	12h -7
	94h		3		55h	_	.3		29h		10.2	42h	15.2	14h -7.5 16h -8
_	95h 96h	_	3.1	_	6h 7h	_	.5	\vdash	2Ah 2Bh	+	10.4	43h 44h	15.4 15.6	18h -8.5
	97h		3.3	В	8h	6	.6		2Ch	士	10.8	45h	15.8	1Ah -9
	98h 99h		3.4 3.5	_	9h Ah	_	.7		2Dh 2Eh	F	11 11.2	46h 47h	16 16.2	1Ch -9.5
_	99n 9Ah	_	3.6	_	Bh	_	.0	\vdash	2Fh	+	11.4	47h 48h	16.4	1Eh -10
_	9Bh	_	3.7	_	Ch		7		30h		11.6	49h	16.6	20h -10.5 22h -11
	9Ch 9Dh	_	3.8	_	Dh Eh		.1	\vdash	31h 32h	_	11.8 12	4Ah 4Bh	16.8	24h -11.5
<u> </u>	9Eh	1	4	_	Fh	_	.3	\vdash	33h	+	12.2	Other	NA NA	26h -12
_	9Fh	_	4.1	_	0h		.4		34h		12.4			28h -12.5
_	A0h A1h	_	4.2 4.3	_	1h 2h	_	.5 .6	\vdash	35h 36h	+	12.6 12.8			2Ah -13
	A2h	_	4.4	_	3h	-	.7	\vdash	37h	+	13			2Ch -13.5 2Eh -14
_	A3h		4.5		¼h		.8		38h	\perp	13.2			30h -14.5
_	A4h A5h	_	4.6 4.7	_	5h 6h		.9 B	\vdash	39h 3Ah	+	13.4 13.6			32h -15
	A6h	_	4.8	_	7h	_	.1		3Bh	+	13.8			34h -15.5
_	A7h		4.9	_	8h		.2	_						36h -16
_	A8h A9h		5.1	_	9h Ah	_	.3							38h -16.5 3Ah -17
	AAh	_	5.2	_	Bh		.5							Other NA
	ABh		5.3		Ch		.6							
_	ACh ADh	_	5.4 5.5	_	:Dh :Eh	_	.7							
	AEh	- 8	5.6	O	ther	N	IA							
		0.5												
0	0	80	0	0	0	0	1	0	0	0	Initial (Code Set Program	ting	Program Initial Code Setting
											011 6	rogram		The command required CLKEN=1.
														Refer to Register 0x22 for detail.
				\										BUSY pad will output high during
														operation.
0	0	09	0	0	0	0	1	0	0	1	Write	Register f	or Initial	Write Register for Initial Code Setting
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		Setting	or mindi	Selection
	1		-				_			_	-			A[7:0] ~ D[7:0]: Reserved
0			B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	-			Details refer to Application Notes of Initial
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	-			Code Setting
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀				
0	0	0A	0	0	0	0	1	0	1	0			for Initial	Read Register for Initial Code Setting
											Code	Setting		
		· /												

Com	man	d Tal	ole										
	D/C#	$\overline{}$	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable with Phase 1, Phase 2 and Pha	ase 3
0	1		1	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	Control	for soft start current and duration setting.	
0	1		1	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	_		A[7:0] -> Soft start setting for Phase1	
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	_	-	= 8Bh [POR] B[7:0] -> Soft start setting for Phase2	
0	1		0	0	D ₅	D ₄	D ₃	D ₂	D ₁			= 9Ch [POR]	
U	l ' l		U		D5	D4	D ₃	D2	"			C[7:0] -> Soft start setting for Phase3 = 96h [POR]	
												D[7:0] -> Duration setting	
												= 0Fh [POR]	
												Bit Description of each byte: A[6:0] / B[6:0] / C[6:0]:	
												Bit[6:4] Driving Strength Selection	
												000 1(Weakest)	
												001 2	1
												010 3	
												011 4	7
												100 5	
												101 6	
												110 7	
												111 8(Strongest)	
												Bit[3:0] Min Off Time Setting of GDF	₹
												0000	-
												~ NA	
												0011 0100 2.6	\dashv
												0101 3.2	-
												0110 3.9	-
												0111 4.6	\neg
												1000 5.4	\dashv
												1001 6.3	
												1010 7.3	
												1011 8.4	\dashv
												1100 9.8	\dashv
												1101 11.5	\neg
												1110 13.8	
												1111 16.5	
												D[5:0]: duration setting of phase D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2 D[1:0]: duration setting of phase 1 Bit[1:0] Duration of Phase [Approximation] 00 10ms 01 20ms 10 30ms	
												11 40ms	
0	0	10	0	0	0	1	0	_	0		Deep Sleep mode	Deep Sleep mode Control: A[1:0]: Description	_
0	1		0	0	0	0	0	0	A ₁	A ₀		A[1:0]: Description 00 Normal Mode [POR]	\dashv
												01 Enter Deep Sleep Mode 1	\dashv
												[MESSE] 12 (Messel Messel Mess	\dashv
												and the second of the second o	إ
												After this command initiated, the chip venter Deep Sleep Mode, BUSY pad wikeep output high. Remark: To Exit Deep Sleep mode, User require	II
2								8				to send HWRESET to the driver	

0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1		0	0	0	0	0	A ₂	A ₁	Ao	Data Entry mode setting	A[2:0] = 011 [POR]
												A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 –Y decrement, X decrement, 01 –Y decrement, X increment, 10 –Y increment, X decrement, 11 –Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high.
												Note: RAM are unaffected by this command.
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A ₅	A4	0	A ₂	A ₁	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.

0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1	10	0	0	0	0	0	A ₂	A ₁	A ₀	VOI Detection	A[2:0] = 100 [POR] , Detect level at 2.3V
	'		•		•	"		/ 1/2	1	/ 10		A[2:0] : VCI level Detect
												A[2:0] VCI level
												011 2.2V
												100 2.3V
												101 2.4V
												110 2.5V 111 2.6V
												Other NA
												Other INA
												The command required CLKEN=1 and
												ANALOGEN=1
												Refer to Register 0x22 for detail.
												After this command initiated, VCI
												detection starts.
												BUSY pad will output high during
												detection. The detection result can be read from the
												Status Bit Read (Command 0x2F).
					_							
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1		A ₇	A_6	A_5	A ₄	Аз	A ₂	A ₁	A ₀	Control	A[7:0] = 48h [POR], external temperatrure sensor
												A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register. A[11:0] = 7FFh [POR]
0	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Write to temperature register)	A[11:0] = /FFN [POR]
0	1		Аз	A ₂	A ₁	A ₀	0	0	0	0	tomporataro regiotory	
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Read from	Tread from temperature register.
1	1		A ₃	A ₂	A ₁	A ₀	0	0	0	0	temperature register)	
	100				220000							
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor Control (Write Command	Write Command to External temperature sensor.
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	to External temperature	A[7:0] = 00h [POR],
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	sensor)	B[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		C[7:0] = 00h [POR],
												A[7:6]
												A[7:6] Select no of byte to be sent
												00 Address + pointer 01 Address + pointer + 1st parameter
												Address + pointer + 1st parameter +
												2nd pointer 11 Address
												A[5:0] – Pointer Setting
												B[7:0] – 1st parameter
												C[7:0] – 2 nd parameter
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												After this command initiated, Write
			7									Command to external temperature sensor starts. BUSY pad will output high during
												operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence
												The Display Update Sequence Option is
												located at R22h.
												BUSY pad will output high during
												operation. User should not interrupt this
												operation to avoid corruption of panel images.
												images.

0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display	Update
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	1	A[7:0] = 00h [POR] B[7:0] = 00h [POR]	
0	1		B ₇	0	0	0	0	0	0	0		A[7:4] Red RAM option 0000	ntent as 0 ntent of to S175
0	0	22	0 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	1 A ₁	0 A ₀	Display Update Control 2	Display Update Sequence Opti Enable the stage for Master Ac A[7:0]= FFh (POR)	on: tivation
												Operating sequence	Parameter (in Hex)
												Enable clock signal Disable clock signal	80 01
											4	Enable clock signal	
												→ Enable Analog Disable Analog	C0
												→ Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	В9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	written into the BW RAM until a command is written. Address p advance accordingly	nother
												For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =	

Com	ommand Table W# D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel:
												Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the
		21	0	J							Tread IV-IVI	MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly.
												The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1		0	1	0	0	A ₃	A ₂	A ₁	A ₀		sensing mode and reading acquired.
												A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	20	0	0	4	0	4	0	4	4	Write DegistfVOOM	This command is used to reduce all the
0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM Control	This command is used to reduce glitch when ACVCOM toggle. Two data bytes
0	1		0	1	1	0	0	0	1	1		D04h and D63h should be set for this command.

	man														
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descrip			
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register				CU interface
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0] =	00h [POR]		
												Λ[7:0]	VCOM	Λ[7:0]	VCOM
												A[7:0] 08h	VCOM -0.2	A[7:0]	-1.7
												0Ch	-0.2	48h	-1.8
												10h	-0.3	4Ch	-1.9
												14h	-0.4	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
						_									
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	egister for	Display (Option:
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Display Option				
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo			VCOM OT		on
1	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co		(Comm	and 0x37,	byte A)	
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0]:	VCOM Re	gister	
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀			and 0x2C)		
					_				_	_					
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀			G[7:0]: Dis		
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G₀		[5 bytes	and 0x37,	Byte B to	Byte F)
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	H₀		[5 bytes	5]		
1	1		17	l ₆	15	4	lз	l ₂	I ₁	lo		H[7:0]~	K[7:0]: Wa	veform V	ersion
1	1		J ₇	J_6	J ₅	J ₄	J ₃	J_2	J ₁	Jo			and 0x37,		
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K ₀		[4 bytes	s]		
0	0	2E	0	0	1	0	1	1	1	0	User ID Read		Byte User		
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		A[7:0]]~	J[7:0]: Use	rID (R38,	Byte A and
1	1		В	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		Byte J)	[10 bytes]		
1	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co					
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D_2	D ₁	Do	-				
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo	-				
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo					
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go	-				
								/	-		-				
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H₀	-	8			
1	1		l ₇	16	l ₅	4	13	12	l ₁	l ₀					
1	1		J ₇	J_6	J ₅	J ₄	J ₃	J_2	J ₁	J ₀					
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC	status Bit	POR 0x0	1]
1	1		0	0	A ₅	A ₄	0	0	A ₁	A ₀		A[5]: HV	Ready De		g [POR=0]
												0: Ready			
												1: Not Re	eady Detection	flag [DO]	2=01
												0: Norma		nag [i Oi	(-0]
												1: VCI lo	wer than th	ne Detect	level
												A[3]: [PC			
													sy flag [PO	K=0]	
												0: Norma			
													hip ID [PO	R=01]	
		I													
												Remark:			
												A[5] and	A[4] status		
												A[5] and RESET,		to be initi	ated by

0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		[153 bytes], which contains the content of
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR[n] and XON[nXY]
0	1		:	:	:	:	:	:	:	:		Refer to Session 6.7 WAVEFORM
0	1		•	••		•	•	٠		•		SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1680 application note. BUSY pad will output high during
												operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1	(1000)	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈		A[15:0] is the CRC read out value
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1		A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection 0: Default [POR]
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		1: Spare
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		C[7:0] Display Mode for WS[15:8]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	Fo		D[7:0] Display Mode for WS[23:16] E[7:0] Display Mode for WS[31:24]
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		F[3:0 Display Mode for WS[35:32]
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	H₀		0: Display Mode 1 1: Display Mode 2
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J _o		F[6]: PingPong for Display Mode 2 0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable G[7:0]~J[7:0] module ID /waveform version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1

0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		Remarks: A[7:0]~J[7:0] can be stored in
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		OTP
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀		
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	Ho		
0	1		17	l 6	15	14	lз	12	l ₁	lo		
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo		
0	1	39	0	0	0	0	0	0	0 A ₁	1 A ₀	OTP program mode	OTP program mode A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage Remark: User is required to EXACTLY
												follow the reference code sequences
0	n	30	n	n	1	1	1	1	n	0	Border Waveform Control	Select horder waveform for VRD
0	0 1	3C	0 A ₇	0 A ₆	As	1 A ₄	0	1 A ₂	0 A ₁	Ao	Border Waveform Control	Select border waveform for VBD
												11 LUT3
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LUT end
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		A[7:0]= 02h [POR]
												22h Normal. 07h Source output level keep
					,	2				§.		previous output before power off
	_				^	_	^	_	_		D4 DAM 0 "	D I DAM O. I
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM Option A[0]= 0 [POR]
0	1		0	0	0	0	0	0	0	Ao		0 : Read RAM corresponding to RAM0x24 1 : Read RAM corresponding to RAM0x26
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the start/end positions of the
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Start / End position	window address in the X direction by an address unit for RAM
0	1		0	0	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		dudiess will for IVAIVI
												A[5:0]: XSA[5:0], XStart, POR = 00h B[5:0]: XEA[5:0], XEnd, POR = 15h

0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the	a start/and	d nosition	s of the
0	1	45	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Start / End position	window ad	ldress in t	he Y direc	ction by an
0	1		0	0	0	0	0	0	0	A ₈	-	address ur	nit for RAI	М	
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		A[8:0]: YS	A[8:0], YS	Start, POR	e = 000h
0	1		0	0	0	0	0	0	0	Вв		B[8:0]: YE	A[8:0], YE	nd, POR	= 127h
0	0	46	0 A ₇	1 A ₆	0 A ₅	0 A ₄	0	1 A ₂	1 A ₁	0 A ₀	Auto Write RED RAM for Regular Pattern	Auto Write A[7:0] = 00		M for Reg	ular Pattern
												A[7]: The 1 A[6:4]: Ste Step of alto to Gate	p Height,	POR= 00	
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
												A[2:0]: Ste Step of alto to Source) on according
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	176
												010	32	110	NA
												011	64	111	NA
												BUSY pad operation.	will outpu	ut high du	ring
0	1	47	0 A ₇	1 A ₆	0 A ₅	0 A ₄	0	1 A ₂	1 A ₁	1 A ₀	Auto Write B/W RAM for Regular Pattern	Auto Write A[7:0] = 00 A[7]: The 1	h [POR]		ular Pattern
												A[6:4]: Ste Step of alto to Gate	p Height, er RAM in	POR= 00 Y-direction	0 on accordin
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
												to Source	er RAM in	X-direction	on according
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	176
												010	32	110	NA
												011	64	111	NA
												During ope	eration, Bl	USY pad v	will output
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initia			
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	counter	address in A[5:0]: 00h	the addre		
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initia			
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	counter	address in	the addre	ess counte	
0	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 000	h [POR].		
0	0	7F	0	1	1	1	1	1	1	1	NOP	This comm	nand is ar	empty co	ommand; it
J		A.E	V	'	1		'	1		'		does not h module. However it Frame Me Command	ave any e t can be u mory Writ	effect on the	ne display minate
														te or Read	1

8. Optical Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	ı	%	8-1
CR	Contrast Ratio	Indoor	8:1		-		8-2
GN	2Grey Level	ı		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 25 °C		3	ı	sec	
Life		Topr		1000000times or 5years			

Notes:

- 8-1. Luminance meter: Eye-One Pro Spectrophotometer.
- 8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.
- 8-3 WS: White state, DS: Dark state

9. Handling, Safety and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

	Data sheet status
Product specification	This data sheet contains final product specifications.
	Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC

134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

10.Reliability test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=70°C, RH=40%, 240h Test in white pattern
3	High-Temperature Operation	T=50°C, RH=35%, 240h
4	Low-Temperature Operation	0°C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50°C, RH=80%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25° C 30min]→[+70 ° C 30 min] : 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

Note:

Put in normal temperature for 1hour after test finished, display performance is ok.

11. Block Diagram

12. Reference Circuit

13. Matched Development Kit

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh black-white E-paper Display and three-color (black, white and red/Yellow) Good Display 's E-paper Display. And it is also added the functions of USB serial port, Raspberry Pi and LED indicator light ect.

DESPI Development Kit consists of the development board and the pinboard.

More details about the Development Kit, please click to the following link: https://www.good-display.com/product/53/

14. Typical Operating Sequence

14.1 Normal Operation Flow

- Deep sleep by Command 0x10
- Power OFF

15.Inspection condition 15.1 Environment

Temperature: $25\pm3^{\circ}$ C Humidity: $55\pm10\%$ RH

15.2 Illuminance

 $Brightness: 1200 {\sim} 1500 LUX; distance: 20-30 CM; Angle: Relate~30° surround.$

15.3 Inspection method

15.4 Display area

15.5 Inspection standard

15.5.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA		
2	Black/White spots	D≤0.25mm, Allowed 0.25mm < D≤0.4mm on N≤3, and Distance≥5mm 0.4mm < D Not Allow	MI	Visual inspection	
3	Black/White spots (No switch)	L \leq 0.6mm, W \leq 0.2mm, N \leq 1 L \leq 2.0mm,W $>$ 0.2mm, Not Allow L $>$ 0.6mm, Not Allow		Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	
5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Display abnormal	Not Allow			

15.5.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	D= $(L+W)/2$ D ≤ 0.25 mm, Allowed 0.25mm $<$ D ≤ 0.4 mm, N ≤ 3 D >0.4 mm, Not Allow	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual	Zone A Zone B
3	Dirty	Allowed if can be removed	MI	/ Microscope	Zone A Zone B
4	Chips/Scratch/ Edge crown	$X \le 3$ mm, $Y \le 0.5$ mmAnd without affecting the electrode is permissible 2 mm $\le X$ or 2 mm $\le Y$ Not Allow $W \le 0.1$ mm, $L \le 5$ mm, No harm to the electrodes and $N \le 2$ allow	MI	Visual / Microscope	Zone A Zone B
5	TFT Cracks	Not Allow	MA	Visual / Microscope	Zone A Zone B
6	Dirty/ foreign body	Allowed if can be removed/ allow	MI	Visual / Microscope	Zone A / Zone B
7	FPC broken/ Goldfingers exidation/ scratch	Not Allow	MA	Visual / Microscope	Zone B

			_		
8	TFT edge bulge /TFT chromatic aberration	TFT edge bulge: $X \le 3$ mm, $Y \le 0.3$ mm Allowed TFT chromatic aberration :Allowed	MI	Visual / Microscope	Zone A Zone B
9	PCB damaged/ Poor welding/ Curl	PCB (Circuit area) damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%			
10	Edge glue height/ Edge glue bubble	Edge Adhesives H≤PS surface (Including protect film) Edge adhesives seep in≤1/2 Margin width Length excluding Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤0.5mm₀ n≤5	MI	Visual / Ruler	Zone B
11	Protect film	Surface scratch but not effect protect function, Allowed		Visual Inspection	
12	Silicon glue	Thickness ≤ PS surface(With protect film): Full cover the IC; Shape: The width on the FPC ≤ 0.5mm (Front) The width on the FPC ≤ 1.0mm (Back) smooth surface,No obvious raised.	MI	Visual Inspection	
13	Warp degree (TFT substrate)	t≤2.0mm	MI	Ruler	
14	Color difference in COM area (Silver point area)	Allowed		Visual Inspection	

16. Packing

17. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL /EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.
- (7) For more precautions, please click on the link: https://www.good-display.com/news/80.html