

E-paper Display Series

GDEY027T91-FL02

Dalian Good Display Co., Ltd.

Product Specifications

Customer	Standard				
Description	2.7" E-PAPER DISPLAY				
Model Name	GDEY027T91 -FL02				
Date	2023/08/09				
Revision	1.0				

D	Design Engineering				
Approval	Approval Check Design				
宝刘印玉	燕修印凤	之吴印良			

Zhongnan Building, No.18, Zhonghua West ST, Ganjingzi DST, Dalian, CHINA

Tel: +86-411-84619565

Email: info@good-display.com

Website: www.good-display.com

REVISION HISTORY

Rev	Date	Item	Page	Remark
1.0	08.09. 202 3	New Creation	ALL	

CONTENTS

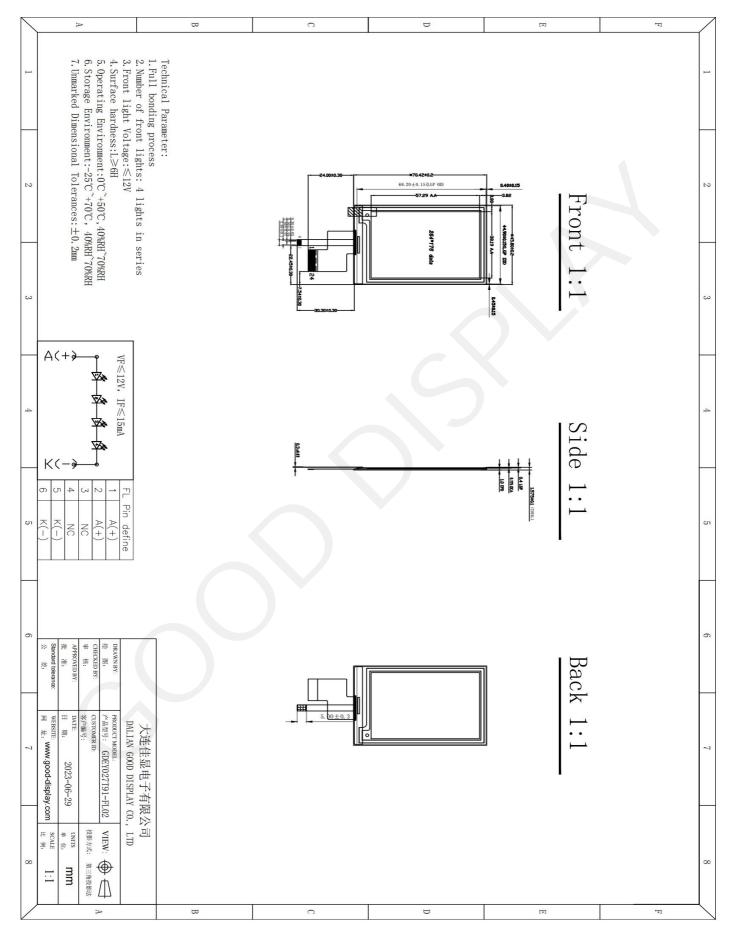
1.	Over View	6
2.	Features	6
3.	Mechanical Specification	6
4.	Mechanical Drawing of EPD Module	7
5.	Input/output Pin Assignment	8
6.	Electrical Characteristics	9
	6.1 Absolute Maximum Rating	
	6.2 Panel DC Characteristics	
	6.3 Panel AC Characteristics	
	6.3.1 MCU Interface Selection	11
	6.3.2 MCU Serial Interface (4-wire SPI)	11
	6.3.3 MCU Serial Interface (3-wire SPI)	12
	6.3.4 Interface Timing	13
7.	Command Table	14
8.	Optical Specification	27
9.	Handling, Safety, and Environment Requirements	28
10.	Reliability Test	29

11.	Block Diagram	30
12.	Reference Circuit	31
13.	Matched Development Kit	32
14.	Typical Operating Sequence	33
	14.1 Normal Operation Flow	33
15.	Inspection condition	
	15.1 Environment	34
	15.2 Illuminance	34
	15.3 Inspect method	34
	15.4 Display area	
	15.5 Inspection standard	3 5
	15.5.1 Electric inspection standard	3 5
	15.5.2 Appearance inspection standard	36
16.	. Packaging	.38
17.	. Precautions	.39

1. Over View

GDEY027T91-FL02 is an Active Matrix Electrophoretic Display (AM EPD), with front light panel. The display is capable to display image at 1-bit white, black full display capabilities. The 2.7inch active area contains 264×176pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2.Features


264×176 pixels display High cntrast High reflectance Ultra wide viewing angle Ultra low power consumption Pure reflective mode Bi-stable display Commercial temperature range Landscape portrait modes Hard-coat antiglare display surface Ultra Low current deep sleep mode On chip display RAM Waveform can stored in On-chip OTP or written by MCU Serial peripheral interface available On-chip oscillator On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage

I2C signal master interface to read external temperature sensorBuilt-in temperature sensor With front light panel, 4 LEDs in serial, operating voltage: 12V

Parameter	Specifications	Unit	Remark
Screen Size	2.7	Inch	
Display Resolution	264(H)×176(V)	Pixel	Dpi:117
Active Area	38.19×57.29	mm	
Pixel Pitch	0.217×0.217	mm	
Pixel Configuration	Rectangle		
Outline Dimension	45.8 (H)×70.42(V) ×1.575(D)	mm	
Weight	8.97±0.5	g	

3.Mechanical Specifications

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	0	N-Channel MOSFET Gate Drive Control	
3	RESE	Ι	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	0	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin	
8	BS1	Ι	Bus Interface selection pin	Note 5-5
9	BUSY	0	Busy state output pin	Note 5-4
10	RES#	Ι	Reset signal input. Active Low.	Note 5-3
11	D/C#	Ι	Data /Command control pin	Note 5-2
12	CS#	Ι	Chip select input pin	Note 5-1
13	SCL	Ι	Serial Clock pin (SPI)	
14	SDA	Ι	Serial Data pin (SPI)	
15	VDDIO	Р	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	Р	Power Supply for the chip	
17	VSS	Р	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	Р	FOR TEST	
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	С	VCOM driving voltage	

I = Input Pin, O =Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when –Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. Electrical Characteristics 6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +6.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	°C
Storage Temp range	TSTG	-25 to+70	°C
Optimal Storage Temp	TSTGo	23±2	°C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note:

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Parameter	Symbol	Conditions	Applica ble pin	Min.	Тур.	Max	Units
Single ground	V _{ss}			-	0	-	V
Logic supply voltage	V _{CI}		VCI	2.2	3.0	3.7	V
Core logic voltage	V _{DD}		VDD	1.7	1.8	1.9	V
High level input voltage	V _{IH}	-		0.8 V _{CI}	-	_	V
Low level input voltage	V _{IL}	-		_	-	0.2 V _{CI}	V
High level output voltage	V _{OH}	IOH = - 100uA		0.9 VCI	-	-	V
Low level output voltage	V _{OL}	IOL = 100uA			-	0.1 V _{CI}	V
Typical power	Р _{ТУР}	V _{CI} =3.0V			TBD	-	mW
Deep sleep mode	P _{STPY}	V _{CI} =3.0V		(0.003		mW
Typical operating current	Iopr_V _{CI}	$V_{CI}=3.0V$		_	TBD		mA
Full update time		25 °C			3		sec
Fast update time	-	25 °C			1.5		sec
Partial update time		25 °C			0.42		sec
Sleep mode current	Islp_V _{CI}	DC/ DC off No clock No input load Ram data retain		-	20		uA
Deep sleep mode current	Idslp_V _{CI}	DC/ DC off No clock No input load Ram data not retain	-	-	1	5	uA

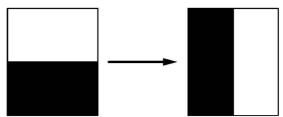
Notes:

1) Refresh time: the time it takes for the whole process from the screen change to the screen stabilization.

2) The difference between different refresh methods:

Full refresh: The screen will flicker several times during the refresh process;

Fast Refresh: The screen will flash once during the refresh process;


Partial refresh: The screen does not flicker during the refresh process.

During the fast refresh or partial refresh of the electronic paper, it is recommended to add a full-screen refresh after 5 consecutive operations to reduce the accumulation of afterimages on the screen.

1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.

2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.

3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by GOOD DISPLAY.

6.3 Panel AC Characteristics

6.3.1 MCU Interface Selection

MCU interface is pin selectable by BS1 shown in Table 6-1.

Table 6-1 : Interface pins assignment under different MCU interface

	Pin Name						
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA	
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA	
3-wire serial peripheral interface (SPI) – 9 bits SPI	Н	RES#	CS#	L	SCL	SDA	

Note : (1) L is connected to VSS and H is connected to VDDIO

6.3.2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 6-2

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	L	L
Write data	↑	Data bit	Н	L

Table 6-2 : Control pins status of 4-wire SPI

Note: (1) L is connected to VSS and H is connected to VDDIO

(2) ↑ stands for rising edge of signal

(3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

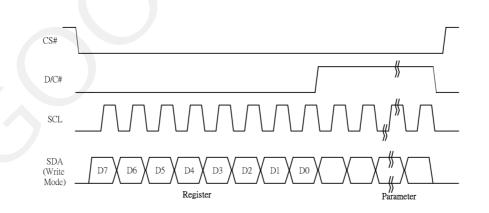


Figure 6-1 : Write procedure in 4-wire SPI mode

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS # is pulled low, the first byte sent is command byte, D/C# is pulled low. After com mand byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pu lled high. An 8-bit data will be shifted out on every clock falling edge. The serial da ta SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

🔄 GooDisplay

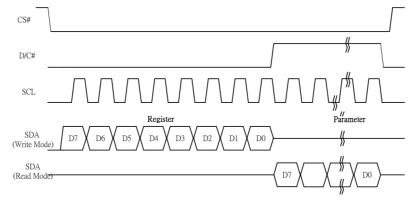
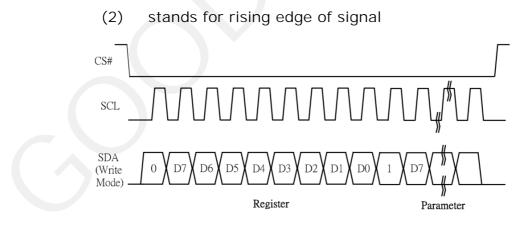


Figure 6-2 : Read procedure in 4-wire SPI mode


6.3.3 MCU Serial Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	Tie LOW	L
Write data	\uparrow	Data bit	Tie LOW	L

Note: (1) L is connected to VSS and H is connected to VDDIO

Figure 6-3 : Write procedure in 3-wire SPI

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command by te, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1.After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-4 shows the read procedure in 3-wire SPI.

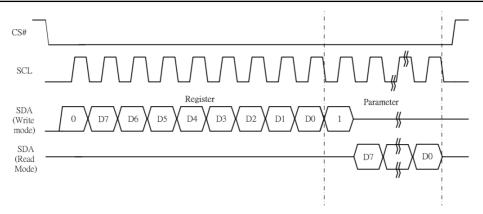
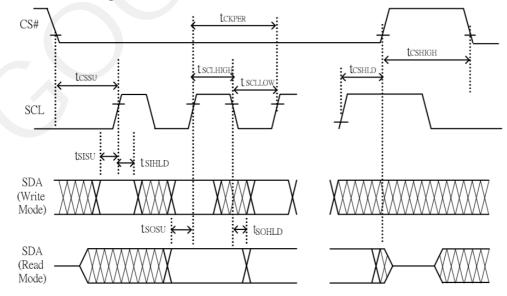


Figure 6-4 : Read procedure in 3-wire SPI mode

6.3.4 Interface Timing

The following specifications apply for: VDDIO - VSS = 2.2V to 3.7V, CL=20pF


Write mode

Parameter	Min	Тур	Max	Unit
SCL frequency (Write Mode)	-	-	20	MHz
Time CS# has to be low before the first rising edge of SCLK	60		-	ns
Time CS# has to remain low after the last falling edge of SCLK	65	920	5423	ns
Time CS# has to remain high between two transfers	100	270		ns
Part of the clock period where SCL has to remain high	25	(- 3)		ns
Part of the clock period where SCL has to remain low	25	-		ns
Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10	1.00	1.00	ns
Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40	-	-	ns
	SCL frequency (Write Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	SCL frequency (Write Mode) - Time CS# has to be low before the first rising edge of SCLK 60 Time CS# has to remain low after the last falling edge of SCLK 65 Time CS# has to remain high between two transfers 100 Part of the clock period where SCL has to remain high 25 Part of the clock period where SCL has to remain low 25 Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL 10	SCL frequency (Write Mode)-Time CS# has to be low before the first rising edge of SCLK60Time CS# has to remain low after the last falling edge of SCLK65Time CS# has to remain high between two transfers100Part of the clock period where SCL has to remain high25Part of the clock period where SCL has to remain low25Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL10	SCL frequency (Write Mode)-20Time CS# has to be low before the first rising edge of SCLK60-Time CS# has to remain low after the last falling edge of SCLK65-Time CS# has to remain high between two transfers100-Part of the clock period where SCL has to remain high25-Part of the clock period where SCL has to remain low25-Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL10-

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
fscl	SCL frequency (Read Mode)	-	(12)	2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100	1	10	ns
t _{CSHLD}	Time CS# has to remain low after the last falling edge of SCLK	50	275	3 7 0	ns
t _{cshigh}	Time CS# has to remain high between two transfers	250	-	1940	ns
tsclhigh	Part of the clock period where SCL has to remain high	180		10	ns
tscllow	Part of the clock period where SCL has to remain low	180	200	38	ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	-	50	-	ns
t _{SOHLD}	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0	(577)	ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

7. Command Table

	man D/C#		and the second sec	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on			
11.2.12	0	01		0	0	0										
0		01	0				0	0	0	1	Driver Output control	Gate setti		1 296 MU	x	
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	-	A[8:0]= 127h [POR], 296 MUX MUX Gate lines setting as (A[8:0] + 1).				
0	1		0	0	0	0	0	0	0	A ₈	-				[],	
0			0	0	0	0	0	B2	B1	Bo		B[2]: GD Selects th GD=0 [PC G0 is the output see GD=1, G1 is the output see B[1]: SM Change s SM=0 [PC G0, G1, C0 interlaced SM=1,	nning seq ne 1st out DR], 1st gate o quence is 1st gate o quence is canning o DR], 52, G32	uence and	nnel, gate 2, G3, nnel, gate 33, G2, te driver. nd right ga	
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage		can from	n from G0 G295 to G		
0	1		0	0	0	A4	A ₃	A ₂	A ₁	Ao	Control	A[4:0] = 0	0h [POR]			
	68		850		1993	0.55	1000		305					OV to 20V		
												A[4:0]	VGH	A[4:0]	VGH	
												00h	20	0Dh	15	
												03h	10	0Eh	15.5	
												04h	10.5	0Fh	16	
												05h	11	10h	16.5	
												06h	11.5	11h	17	
				1								07h	12	12h	17.5	
												08h	12.5	13h	18	
												07h	12	14h	18.5	
												08h	12.5	15h	19	
												09h	13	16h	19.5	
												0Ah	13.5	17h	20	
												ALC: A DECK OF A DECK	A REAL PROPERTY AND A REAL		20	
												0Bh	14	Other	NA	

GDEY027T91-FL02

🗗 GooDisplay

0

/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Comn	nand	1	Description
0	0	04	0	0	0	0	0	1	0	0	Source	e Driving	voltage	Set Source driving voltage
0	1		A7	A	A5	A ₄	A ₃	A ₂	A1	Ao	Contro	Contractor and the second	Tonago	A[7:0] = 41h [POR], VSH1 at 15V
0	1		B ₇	Be	B ₅	B ₄	B3	B ₂	B1	Bo	-			B [7:0] = A8h [POR], VSH2 at 5V.
0	1			1 million	100.00	10208.0	-			1000	-			C[7:0] = 32h [POR], VSL at -15V
			C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀				Remark: VSH1>=VSH2
/SI]/B[7] H1/VS 3.8V		oltag	je se	tting	from	2.4V	VS	7]/B[7 SH1/\ 17V			e setting	from 9V	C[7] = 0, VSL setting from -5V to -17V
	/B[7:0]	VSH	1/VSH2	A/E	3[7:0]	VSH	/VSH2		A/B[7:0]	VS	H1/VSH2	A/B[7:0]	VSH1/VSH2	C[7:0] VSL
1	8Eh	-	2.4		Fh	X.	5.7		23h		9	3Ch	14	0Ah -5
_	8Fh	-	2.5	-	BOh		i.8		24h		9.2	3Dh	14.2	0Ch -5.5
	90h 91h	1.0	2.6		81h 82h		6.9		25h 26h	-	9.4 9.6	3Eh 3Fh	14.4 14.6	0Eh -6
- 8	92h		2.8	E	3h		5.1		27h		9.8	40h	14.8	10h -6.5
	93h	-	2.9	2 2	34h		3.2		28h		10	41h	15	12h -7 14h -7.5
_	94h 95h		3 3.1		85h 86h		5.3 5.4		29h 2Ah	-	10.2	42h 43h	15.2 15.4	14h -7.5 16h -8
_	96h		3.2	1.1.1.1	87h		5.5	1	2Bh	-	10.4	43h	15.6	18h -8.5
	97h	1	3.3	E	88h	6	6.6	14	2Ch		10.8	45h	15.8	1Ah -9
_	98h		3.4	-	39h		i.7		2Dh	1	11	46h	16	1Ch -9.5
_	99h 9Ah		3.5 3.6		Bh	25	6.8 6.9	-	2Eh 2Fh		11.2 11.4	47h 48h	16.2 16.4	1Eh -10
	9Bh		3.7		Ch		7	-	30h		11.6	49h	16.6	20h -10.5
	9Ch	-	3.8	1.1	Dh		1		31h		11.8	4Ah	16.8	22h -11 24h -11.5
	9Dh	-	3.9		Eh	_	.2	-	32h		12	4Bh	17	2411 -11.5 26h -12
_	9Eh 9Fh	-	4	1.1.1.2	3Fh 20h		.3 .4	12	33h 34h	-	12.2	Other	NA	28h -12.5
_	A0h		4.2	1 12	21h		.5		35h		12.6			2Ah -13
	A1h		4.3		2h	10	.6	8	36h		12.8			2Ch -13.5
	A2h		4.4		C3h		.7 .8		37h	-	13 13.2			2Eh -14
	A3h A4h		4.5 4.6		24h 25h	A	.9	_	38h 39h	_	13.4			30h -14.5
	A5h		4.7		26h		8	-	3Ah	-	13.6			32h -15
2	A6h	-	4.8		7h		1.1		3Bh		13.8			34h -15.5
	A7h	-	4.9	-	C8h		.2							36h -16 38h -16.5
	A8h A9h		5 5.1		9h Ah		.3							3Ah -17
_	AAh	1	5.2	1	Bh		1.5							Other NA
_	ABh		5.3	1. 10	Ch	100	1.6							
	ACh ADh		5.4 5.5	1.0	Dh Eh		.7							
	AEh	-	5.6		ther	<u> </u>	NA A							
0	0	08	0	0	0	0	1	0	0	0		Code Set	ting	Program Initial Code Setting
											UIPF	Program		The command required CLKEN=1.
														Refer to Register 0x22 for detail.
														BUSY pad will output high during operation.
							1							operation.
0	0	09	0	0	0	0	1	0	0	1	Write I	Register f	for Initial	Write Register for Initial Code Setting
0	1	0.000	A ₇	A	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		Setting		Selection
0	1		B ₇	Be	B ₅	B ₄	B ₃	B ₂	B1	Bo		2		A[7:0] ~ D[7:0]: Reserved
				1000	1.1.16.16.	0.992		0.000		100.000				Details refer to Application Notes of Initia
0	1		C7	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀				Code Setting
0	1		D7	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀				
0	0	0A	0	0	0	0	1	0	1	0		Register t Setting	for Initial	Read Register for Initial Code Setting

🗗 GooDisplay

	man D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable with Phase 1, Phase 2 and Phase
0	1	00	1	A	A ₅	A4	A ₃	A ₂	A	Torre	Control	for soft start current and duration setting.
0	1		1	B6	B ₅	B ₄	B ₃	B ₂	-	-	S Contraction and Contraction	A[7:0] -> Soft start setting for Phase1
0	1		1		C ₅	C ₄	C ₃	C2	-	-		= 8Bh [POR] B[7:0] -> Soft start setting for Phase2
-	- 8- 4			1222		10172-0		-	-	53,5%	-	= 9Ch [POR]
0	1		0	0	D5	D4	D ₃	D2	D1	Do		C[7:0] -> Soft start setting for Phase3
												= 96h [POR] D[7:0] -> Duration setting
												= 0Fh [POR]
												Bit Description of each byte: A[6:0] / B[6:0] / C[6:0]:
												Bitt6:41 Driving Strength
												Selection
												000 1(Weakest) 001 2
												001 2
												011 4
												100 5
												110 7
												110 / 111 8(Strongest)
												Bit[3:0] Min Off Time Setting of GDR
												0000
												0011 NA
												0100 2.6
												0101 3.2
												0110 3.9
												0111 4.6
												1000 5.4
												1001 6.3
												1010 7.3
												1011 8.4
								K –				1100 9.8
												1101 11.5
												1110 13.8
												1111 16.5
												D[5:0]: duration setting of phase D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2 D[1:0]: duration setting of phase 1 Bit[1:0] Duration of Phase [Approximation]
												00 [Approximation]
						1						01 20ms
												10 30ms
												11 40ms
)	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep mode Control:
0	1	10	0	0	0	0	0	0	A1	A	Book cleep mode	A[1:0] : Description
-			°	°	9			0	~	~~		00 Normal Mode [POR]
												01 Enter Deep Sleep Mode 1
												11 Enter Deep Sleep Mode 2
												After this command initiated, the chip v
												enter Deep Sleep Mode, BUSY pad wi keep output high. Remark:
												To Exit Deep Sleep mode, User requir to send HWRESET to the driver

🗗 GooDisplay

and the second second second	mane	Concernance of the second	11						Linese	line in		
	D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence A[2:0] = 011 [POR]
0			0	0	0	0	0	A2	Aı	Αο		A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter car be made independently in each upper and lower bit of the address. 00 –Y decrement, X decrement, 01 –Y decrement, X decrement, 10 –Y increment, X decrement, 11 –Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A6	A5	A4	0	A ₂	Aı	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.

	man				l i cana di						(
/ W #	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1	2.05	0	0	0	0	0	A ₂	A ₁	Ao		A[2:0] = 100 [POR] , Detect level at 2.3V
	18			188103	0.000	2	87523	anata.	100010-01	2010		A[2:0] : VCI level Detect
												A[2:0] VCI level
												011 2.2V
												100 2.3V
												101 2.4V
												110 2.5V
												111 2.6V
												Other NA
												The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
_												
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control	A[7:0] = 48h [POR], external temperatrure sensor
												A[7:0] = 80h Internal temperature sensor
	L					ļ,						
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A7	A ₆	A5	A4	Аз	A ₂	A1	A ₀	Control (Write to	A[7:0] = 7Fh [POR]
						6		1			temperature register)	
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1	10	A7	A	As	A ₄	A ₃	A ₂	A1	A	Control (Read from	read nom temperature register.
	<u> </u>			710	1.0	7.44	10	112		10	temperature register)	
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A ₇	A	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control (Write Command	sensor.
0	1		B7	Be	B ₅	B4	B3	B ₂	Bi	Bo	to External temperature	A[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C2	C ₁		sensor)	B[7:0] = 00h [POR],
U			67	6	05	04	U 3	U 2	U1	0		C[7:0] = 00h [POR],
												A[7:6]
												A[7:6] Select no of byte to be sent
						(00 Address + pointer
												01 Address + pointer + 1st parameter Address + pointer + 1st parameter +
												2nd pointer
												Alf5:0] – Pointer Setting
												B[7:0] – Pointer Setting B[7:0] – 1 st parameter
												$C[7:0] - 2^{nd}$ parameter
												The command required CLKEN=1.
												Refer to Register 0x22 for detail.
												After this command initiated Multi-
												After this command initiated, Write Command to external temperature
												sensor starts. BUSY pad will output high
												during operation.
•			•	-							IO and the Deed	
0	0	1F	0	0	0	1	1	1	1	1	IC revision Read	Read IC revision [POR 0x0D]
	1	I	A7	AG	A ₅	A4	A ₃	A ₂	A ₁	Ao	1	

	man				Langes (1		ľ.	
./W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.
0	0	04	0	0	4	0	0	0	0	4	Display Ladata Cantral	DAM content online for Discloy Lindets
0		21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display Update A[7:0] = 00h [POR]
0	1		A7	A	A ₅	A4	Аз	A ₂	A1	Ao		B[7:0] = 00h [POR]
0	1		B ₇	0	0	0	0	0	0	0		A[7:4] Red RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content A[3:0] BW RAM option 0000 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content as 0 0100 Bypass RAM content as 0 1000 Inverse RAM content as 0 1000 Inverse RAM content B[7] Source Output Mode 0 0 Available Source from S0 to S175 1 Available Source from S8 to S167
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entries will be written into the BW RAM until another command is written. Address pointers wi advance accordingly For Write pixel: Content of Write RAM(BW) = 1 For Black pixel: Content of Write RAM(BW) = 0

	man D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	
0	0	22	0 A7	0 A6	1 A5	0 A4	0 A3	0 A2	1 A1	0 A0	Display Update Control 2	Display Update Sequence Option Enable the stage for Master Action	
				/10	~	/ 14	~	12	A	~		A[7:0]= FFh (POR) Operating sequence	Parameter
													(in Hex)
												Enable clock signal Disable clock signal	80 01
												Enable clock signal	
												→ Enable Analog	C0
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	В9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog →Disable OSC	CF
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
												Enable clock signal →Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entrie written into the RED RAM until command is written. Address p advance accordingly.	another
												For Red pixel: Content of Write RAM(RED) = For non-Red pixel [Black or Wh Content of Write RAM(RED) =	nite]:
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read MCU bus will fetch data from R According to parameter of Regi to select reading RAM0x24/ RA until another command is writte Address pointers will advance accordingly. The 1 st byte of data read is dur	AM. ister 41h M0x26, en.

	D/C#	and the second second	100 m	D6	D5	D4	D3	D2	D1	DO	Command	Descript	tion		
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	for durat VCOM v The sen register The com ANALOO	ion defined value. sed VCOM nmand requ GEN=1	d in 29h t I voltage uired CLP	tions and hold before reading is stored in KEN=1 and
												Refer to	Register 0	x22 for d	etail.
												BUSY pa operatio	ad will outp n.	out high o	luring
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration				ing VCOM
0	1		0	1	0	0	A ₃	A ₂	A ₁	A ₀		sensing	mode and	reading a	acquired.
													9h, duratic ense durat		3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program	VCOM re	gister into	o OTP
													nmand requ Register 0		
												BUSY pa	ad will outp n.	out high c	luring
0	0	2C	0 A7	0 A6	1 A5	0 A4	1 A3	1 A2	0 A1	0 Ao	Write VCOM register		COM registe 00h [POR]		ICU interface
												A[7:0]	VCOM	A[7:0]	VCOM
								\mathbf{K}				08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA

	D/C#	d Ta Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read Register for Display Option:
1	1	20	A7	A	A5	A ₄	A ₃	A ₂	A1	Ao	Display Option	Tread Tregister for Display Option.
1	1	-	B ₇	B6	B5	B ₄	B ₃	B ₂	B1	Bo		A[7:0]: VCOM OTP Selection
1	1		C7	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	-	(Command 0x37, Byte A)
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do	-	B[7:0]: VCOM Register
1	1	-	E ₇	E ₆	E ₅	E4	E ₃	E ₂	E1	E	-	(Command 0x2C)
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F1	Fo	-	C[7:0]~G[7:0]: Display Mode
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go	-	(Command 0x37, Byte B to Byte F)
1	1		H7	He	H ₅	H ₄	H ₃	H ₂	H ₁	Ho		[5 bytes]
1	1		17	6	15	4	13	l 2	1	lo		H[7:0]~K[7:0]: Waveform Version
1	1		J ₇	J ₆	J ₅	J4	J ₃	J ₂	J ₁	Jo		(Command 0x37, Byte G to Byte J)
1	1		K ₇	K ₆	K ₅	K4	K ₃	K ₂	K ₁	Ko		[4 bytes]
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10 Byte User ID stored in OTP:
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0]]~J[7:0]: UserID (R38, Byte A and Byte J) [10 bytes]
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		Byte 3) [10 bytes]
1	1		C7	C ₆	C 5	C ₄	C ₃	C ₂	C ₁	C ₀		
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		
1	1		E ₇	E ₆	E ₅	E4	E ₃	E ₂	E ₁	E ₀		
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		
1	1		G ₇	G ₆	G ₅	G4	G ₃	G ₂	G ₁	G ₀		
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho		
1	1		17	l 6	5	I 4	3	12	11	lo		
1	1		J ₇	J ₆	J ₅	J4	J ₃	J ₂	J1	Jo		
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	A5	A4	0	0	A1	Ao		A[5]: HV Ready Detection flag [POR=0] 0: Ready
												1: Not Ready
												A[4]: VCI Detection flag [POR=0]
												0: Normal 1: VCI lower than the Detect level
												A[3]: [POR=0]
												A[2]: Busy flag [POR=0]
												0: Normal 1: BUSY
												A[1:0]: Chip ID [POR=01]
												Remark:
												A[5] and A[4] status are not valid after RESET, they need to be initiated by
												command 0x14 and command 0x15
												respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting
												The contents should be written into RAM before sending this command.
												before sending this command.
												The command required CLKEN=1.
												Refer to Register 0x22 for detail.
												BUSY pad will output high during

	man		-					Sec. 1	- 1		1-	
2/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0 0 0 0	0 1 1 1 1	32	0 A7 B7 :	0 A6 B6 :	1 A5 B5 :	1 A4 B4 :	0 A3 B3 :	0 A2 B2 :	1 A1 B1	0 A ₀ B ₀ :	Write LUT register	Write LUT register from MCU interface [227 bytes], which contains the content of VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR and XON[nXY] Refer to Session 6.7 WAVEFORM SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command
U	U	34	U	U			U		U	U		For details, please refer to SSD1680A application note. BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1		A15	A14	A13	A ₁₂	A11	A10	A9	A ₈		A[15:0] is the CRC read out value
1	1		A ₇	A	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1		A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1		B7	B ₆	B ₅	B 4	B ₃	B ₂	B ₁	B ₀		0: Default [POR] 1: Spare
0	1		C 7	C ₆	C 5	C4	C ₃	C ₂	C1	C ₀		12810-016-01729480-0
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0] Display Mode for WS[7:0] C[7:0] Display Mode for WS[15:8]
0	1		E7	E ₆	E ₅	E4	E ₃	E ₂	E1	E ₀		D[7:0] Display Mode for WS[23:16]
0	1		0	F ₆	0	0	F ₃	F ₂	F1	Fo	-	0: Display Mode 1
0	1		G7	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀	-	1: Display Mode 2
0	1		H ₇	H ₆	H ₅	H4 14	H ₃	H ₂	H ₁	H ₀	-	F[6]: Ping-Pong for Display Mode 2
0	1		J7	16 J6	J5	14 J4	J ₃	J ₂	J ₁	Jo		0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not suppor for Display Mode 1

	D/C#	d Ta Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description		
					1	1								
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID		er for User ID :0]: UserID [10 bytes]	
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀			.oj. Oseno [10 bytes]	
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		Remarks: A	7:0]~J[7:0] can be stored in	
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	-	OTP		
0	1		D7	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀				
0	1		E7	E ₆	E ₅	E4	E ₃	E ₂	E1	E ₀				
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo				
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀				
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho				
0	1		17	6	15	14	13	12	1	lo	1			
0	1		J ₇	J ₆	J ₅	J4	J ₃	J ₂	J ₁	Jo	-			
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program	m mode	
0	1		0	0	0	0	0	0	A ₁	A ₀	on programmous		Normal Mode [POR]	
0										10			Internal generated OTP	
												programmin	g voltage	
												· User is rea	uired to EXACTLY follow th	
													de sequences	
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control			
0	1		A7	A ₆	A ₅	A4	0	0	A1	Ao		A[7:0] = C0h [POR], set VBD as HIZ.		
<u> </u>	2.4		1000000		12091200			1580	1000-000				ect VBD option	
												A[7:6]	Select VBD as GS Transition,	
												00	Defined in A[2] and A[1:0]	
												01	Fix Level,	
													Defined in A[5:4]	
												10	VCOM	
												11[POR]	HiZ	
													VBD level	
												A[5:4]	VSS	
												01	VSH1	
												10	VSL	
												11	VSH2	
													ransition setting for VBD	
												VBD Level S		
													; 01b: VSH1;	
												10b: VSL; 11 A[1:0]	VBD Transition	
												00	LUT0	
												01	LUT1	
												10	LUT2	
												11	LUT3	
a										_		<u> </u>		
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LU		
0	1		A7	A ₆	A ₅	A4	A ₃	A ₂	A ₁	Ao	na 68 (88.9)	Data bytes s	hould be set for this	
2	975		22428	00007	1000	1999	5.577523	8253	THE SEC				programmed into Waveforr	
												setting. 22h Norn	aal	
												I ZZn Norn		
													ce output level keep	

	D/C#	1000 million and	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on			
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RA				
0	1	41	0	0	0	0	0	0	0	A ₀		A[0]= 0 [F 0 : Read RAM0x24 1 : Read	POR] RAM corre I RAM corre	98. (ADR		
												RAM0x26	D			
0			0									0			Z 41	
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address Start / End position		ne start/en ddress in t			
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	-		unit for RA		cuon by a	
0	1	r	0	0	B ₅	B4	B ₃	B ₂	B ₁	Bo			SA[5:0], XS EA[5:0], XB			
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify th	ne start/en	d position	s of the	
0	1		A ₇	A	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Start / End position		ddress in t			
0	1	-	0	0	0	0	0	0	0	As	- 2	address u	init for RA	M	2070E	
0	1	_	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	-	A[8:0]: YSA[8:0], YStart, POR = 000h				
0	1	_	0	0	0	0	0	0	0	B8	-	B[8:0]: YE	: YSA[8:0], YStart, POR = 000h : YEA[8:0], YEnd, POR = 127h			
U			0	U	0	0	0	0	0	D8		10[0:0]. 11			V 12111	
0	0	46	0	1	0	0	0	1		0	Auto Write RED RAM for Regular Pattern	Auto Write A[7:0] = 0	e RED RA	M for Reg	ular Patt	
0	1		A7	A ₆	A5	A4	0	A2	A1	Ao		A[7]: The A[6:4]: St	1st step va ep Height, ter RAM ir	POR= 00	0	
												A[6:4]	Height	A[6:4]	Height	
												000	8	100	128	
												001	16	101	256	
												010	32	110	296	
												011	64	111	NA	
												Step of al according	ep Width, I ter RAM ir to Source	X-directi		
													Width	A[2:0]	Width	
												000	8	100	128	
												001	16	101	176	
												010	32	110	NA	
												011	64	111	NA	
												BUSY partition	d will outpu	ut high du	ring	

/ W #	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on		
0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for	Auto Write	e B/W RAI	M for Real	ular Patter
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	Ao	Regular Pattern		0h [POR]		
												A[6:4]: St	1st step va ep Height, ter RAM ir to Gate	POR= 00	0
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
												Step of al	ep Width, ter RAM ir to Source Width	X-direction	
												000	8	100	128
												001	16	101	176
												010	32	110	NA
												011	64	111	NA
												During op high.	eration, B	USY pad v	will output
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initi	al settings	for the R	AMX
0	1		0	0	A ₅	A4	Аз	A ₂	Aı	Ao	counter		n the addr		
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Mako initi	al settings	for the R	
0	1		A7	AG	A5	A ₄	A3	A ₂	A ₁	A	counter		n the addr		
0	1		0	0	0	0	0	0	0	Aa	-	A[8:0]: 00	0h [POR].		
0	0	7F	0	1	1	1	1	1	1	1	NOP	does not l module. However	mand is ar have any e it can be u emory Wri ds.	effect on the	ne display minate

8.Optical Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	8-1
CR	Contrast Ratio	Indoor	8:1		-		8-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 25 °C		3	-	sec	
Life		Topr		1000000times or 5years			

Notes:

8-1. Luminance meter: Eye-One Pro Spectrophotometer.

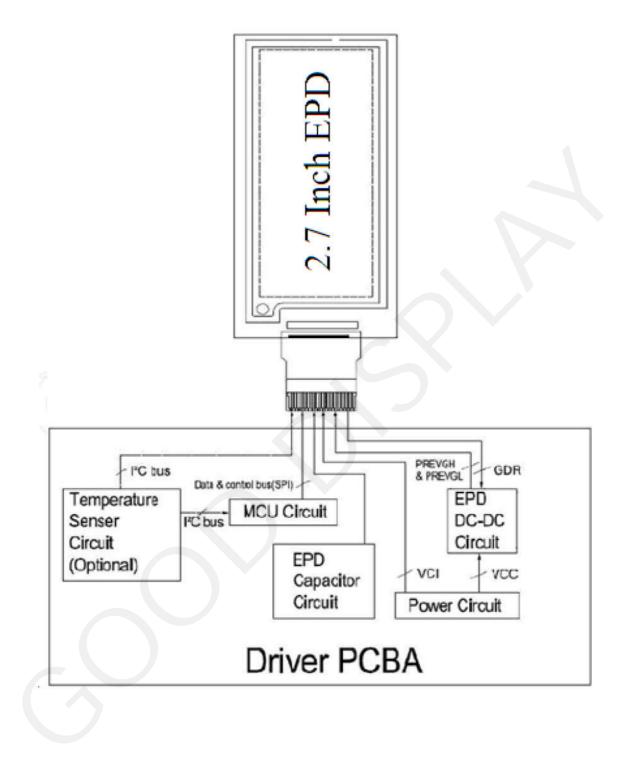
8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

8-3 WS: White state, DS: Dark state

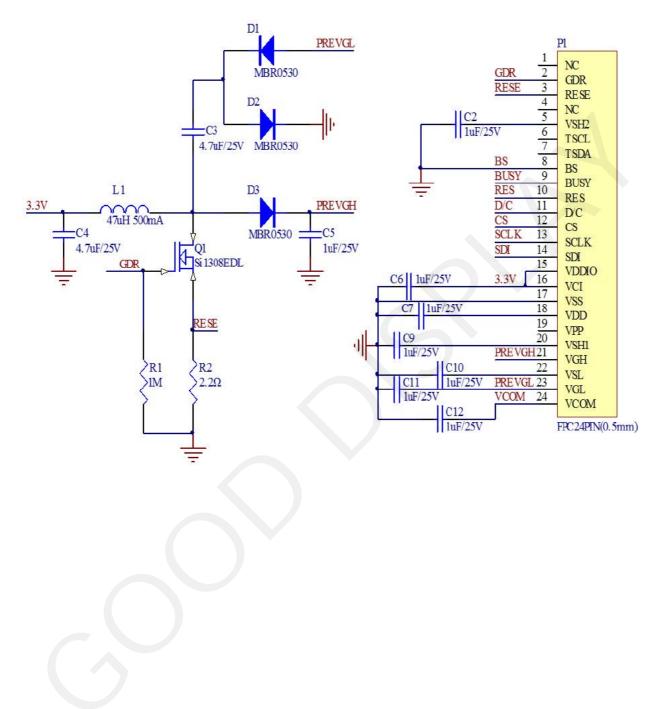
9. Handling, Safety and Environment Requirements

	Warning						
The display glass may break	when it is dropped or bumped on a hard surface.						
Handle with care. Should the	display break, do not touch the electrophoretic						
material. In case of contact with electrophoretic material, wash with water and							
soap.							
	Caution						
	ot be exposed to harmful gases, such as acid and lectronic components. Disassembling the display						
Disassembling the display me the warranty agreements.	odule can cause permanent damage and invalidates						
components. The glass can b	that are common to handling delicate electronic preak and front surfaces can easily be damaged. tive to static electricity and other rough						
	Data sheet status						
Product specification	This data sheet contains final product specifications.						
	Limiting values						
System (IEC	ccordance with the Absolute Maximum Rating						
-	re of the limiting values may cause permanent						
	are stress ratings only and operation of the						
	er conditions above those given in the						
Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.							
values for extended periods n	hay affect device reliability.						
	Application information						
Where application information	n is given, it is advisory and does not form part of						
the specification.							

10.Reliability test


NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=70° C, RH=40%, 240h Test in white pattern
3	High-Temperature Operation	T=50°C, RH=35%, 240h
4	Low-Temperature Operation	0°C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50° C, RH=80%, 240h Test in white pattern
7	Temperature Cycle	1 cycle: $[-25^{\circ} \text{ C } 30\text{min}]$ → $[+70^{\circ} \text{ C } 30\text{ min}]$: 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m ² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

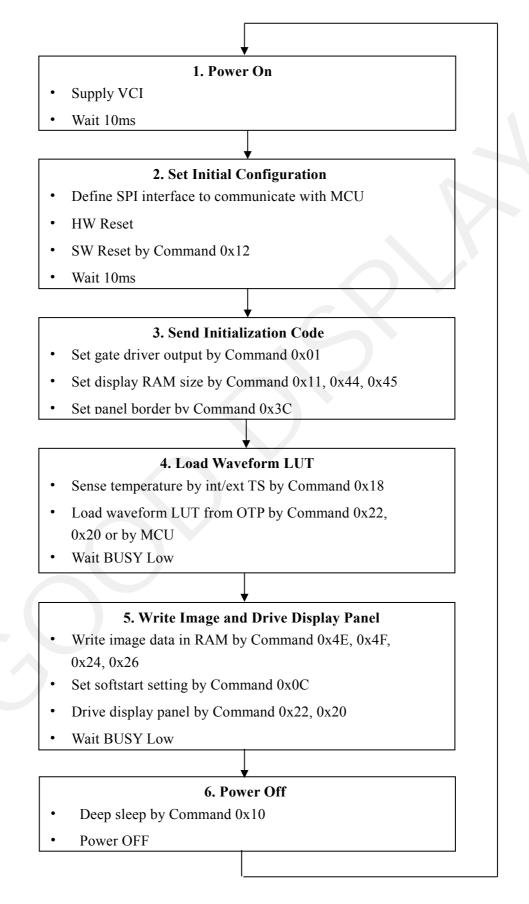
Note:


Put in normal temperature for 1hour after test finished, display performance is ok.

11. Block Diagram

12. Reference Circuit

13. Matched Development Kit

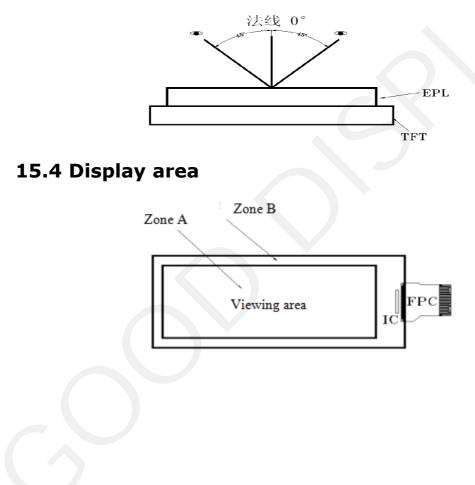

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh blackwhite E-paper Display and three-color (black, white and red/Yellow) Good Display 's E-paper Display. And it is also added the functions of USB serial port, Raspberry Pi and LED indicator light ect.

DESPI Development Kit consists of the development board and the pinboard.

More details about the Development Kit, please click to the following link: https://www.good-display.com/product/53/

14.Typical Operating Sequence

14.1 Normal Operation Flow


15.Inspection condition 15.1 Environment

Temperature: $25\pm3^{\circ}$ C Humidity: $55\pm10^{\circ}$ RH

15.2 Illuminance

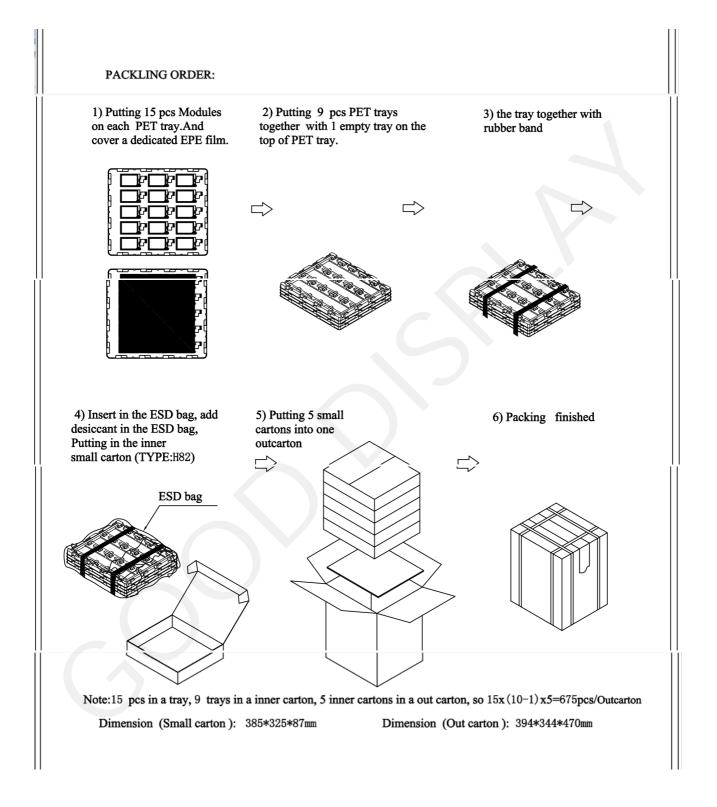
Brightness:1200~1500LUX;distance:20-30CM;Angle:Relate 30°surround.

15.3 Inspection method

15.5 Inspection standard

15.5.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA		
2	Black/White spots	$D \le 0.25 \text{mm}$, Allowed $0.25 \text{mm} < D \le 0.4 \text{mm} \cdot N \le 3$, and $D = 0.4 \text{mm} \cdot N \le 3$, and 0.4 mm < D Not Allow	MI	Visual inspection	
3	Black/White spots (No switch)	L \leq 0.6mm, W \leq 0.2mm, N \leq 1 L \leq 2.0mm, W $>$ 0.2mm, Not Allow L $>$ 0.6mm, Not Allow	2	Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	
5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Display abnormal	Not Allow			



15.5.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	$L \rightarrow U \rightarrow $	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual	Zone A Zone B
3	Dirty	Allowed if can be removed	MI	/ Microscope	Zone A Zone B
4	Chips/Scratch/ Edge crown	x X \leq 3mm, Y \leq 0.5mmAnd without affecting the electrode is permissible y 2mm \leq X or 2mm \leq Y Not Allow $\qquad \qquad $	MI	Visual / Microscope	Zone A Zone B
5	TFT Cracks	Not Allow	МА	Visual / Microscope	Zone A Zone B
6	Dirty/ foreign body	Allowed if can be removed/ allow	MI	Visual / Microscope	Zone A / Zone B
7	FPC broken/ Goldfingers xidation/ scratch	Not Allow	MA	Visual / Microscope	Zone B

8	TFT edge bulge /TFT chromatic aberration	TFT edge bulge: $X \leq 3mm$, $Y \leq 0.3mm$ Allowed TFT chromatic aberration :Allowed	MI	Visual / Microscope	Zone A Zone B
9	PCB damaged/ Poor welding/ Curl	PCB (Circuit area) damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%			
10	Edge glue height/ Edge glue bubble	Edge Adhesives H \leq PS surface (Including protect film) Edge adhesives seep in \leq 1/2 Margin width Length excluding Edge adhesives bubble: bubble Width \leq 1/2 Margin width; Length \leq 0.5mm $_{\circ}$ n \leq 5	MI	Visual / Ruler	Zone B
11	Protect film	Surface scratch but not effect protect function, Allowed		Visual Inspection	
12	Silicon glue	Thickness \leq PS surface(With protect film): Full cover the IC; Shape: The width on the FPC \leq 0.5mm (Front) The width on the FPC \leq 1.0mm (Back) smooth surface,No obvious raised.	MI	Visual Inspection	
13	Warp degree (TFT substrate)	t≤2.0mm	MI	Ruler	
14	Color difference in COM area (Silver point area)	Allowed		Visual Inspection	

16. Packing

17. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL /EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.
- (7) For more precautions, please click on the link: https://www.good-display.com/news/80.html