

R GooDisplay

GDEY0154D67

Dalian Good Display Co., Ltd.

Product Specifications

Customer	Standard
Description	1.54" E-PAPER DISPLAY
Model Name	GDEY0154D67
Date	2024/04/17
Revision	1.2

D	esign Engineerir	ng
Approval	Check	Design
宝刘印玉	之温印馨	之对

Zhongnan Building, No.18, Zhonghua West ST, Ganjingzi DST, Dalian, CHINA

Tel: +86-411-84619565

Email: info@good-display.com Website: www.good-display.com

REVISION HISTORY

Rev	Date	Item	Page	Remark
1.0	NOV.23.2020	New Creation	ALL	
1.1	DEC.14.2023	Note 5-4	9	From Low to High
1.2	Apr.17.2024	Items 11 ~ 15	30~35	Update Reliability test, Inspection method and condition

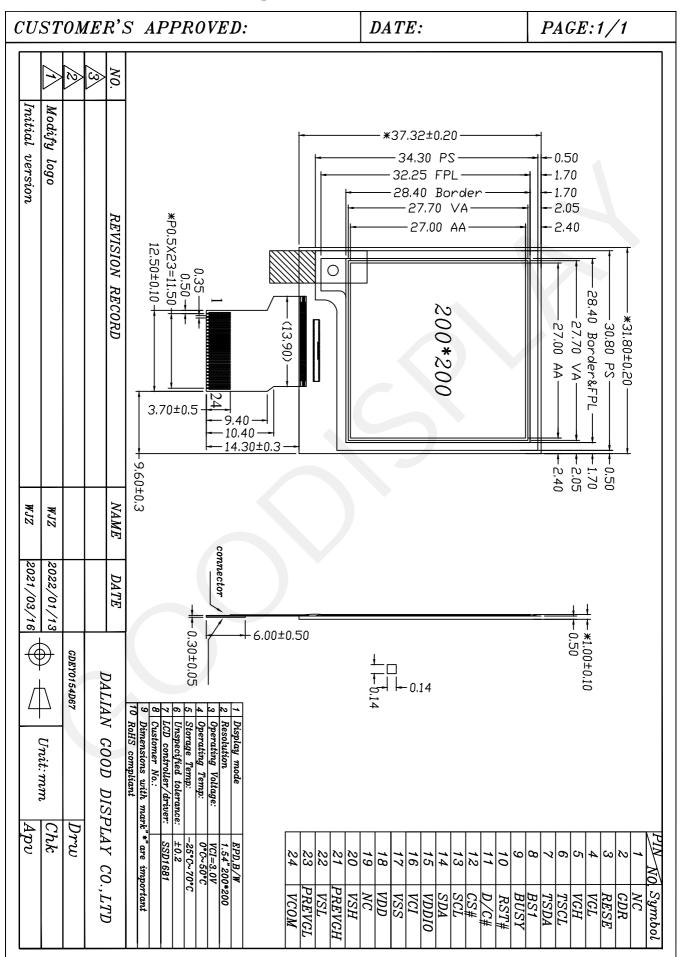
CONTENTS

1. Over View	·5
2. Features	5
3. Mechanical Specifications	5
4. Mechanical Drawing of EPD module	6
5. Input /Output Pin Assignment	7
6. Command Table	9
7. Electrical Characteristics	21
8. Optical Specifications	27
9. Typical Application Circuit	
10. Matched Development Kit	
11. Reliability test	30
12. Typical Operating Sequence	31
13. Inspection method and condition	32
14. Handling, Safety and Environment Requirements	36
15. Packaging	37
16. Precautions	38

1. Over View

GDEY0154D67 is a TFT active matrix electrophoretic display, with interface and a reference system design. The 1.54" active area contains 200×200 pixels, and has 1-bit black/white full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.

2.Features


- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable
- Commercial temperature range
- Landscape, portrait mode
- Antiglare hard-coated front-surface
- Low current sleep mode
- On chip display RAM
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and source driving voltage
- I2C Signal Master Interface to read external temperature sensor
- Available in COG package IC thickness 300um

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	1.54	Inch	
Display Resolution	200(H)×200(V)	Pixel	Dpi:184
Active Area	27.0(H)×27.0(V)	mm	
Pixel Pitch	0.14×0.14	mm	
Pixel Configuration	Square		
Outline Dimension	31.80(H)×37.32(V) ×1.0(D)	mm	
Weight	2.18±0.5	g	

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	О	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	Ι	Reset signal input. Active Low.	Note 5-3
11	D/C#	Ι	Data /Command control pin	Note 5-2
12	CS#	Ι	Chip select input pin	Note 5-1
13	SCL	Ι	Serial Clock pin (SPI)	
14	SDA	I	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	C	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	C	VCOM driving voltage	

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled Low.

Note 5-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin

is pulled High, the data will be interpreted as data. When the pin is pulled Low, the data will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 5-4: This pin (BUSY) is Busy state output pin. When Busy is High, the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin High when the driver IC is working such as:

Outputting display waveform; or

Communicating with digital temperature sensor

Note 5-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected. Please refer to below Table.

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. Command Table

Com	man	d Tal	ole												
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	on		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti	ng		
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[8:0]= C7			
0	1						_		-	_		MUX Gate	e lines set	ting as (A	[8:0] + 1).
0	1		0 0	0	0	0	0	0 B ₂	0 B ₁	A ₈ B ₀		B[2:0] = 00 Gate scan B[2]: GD Selects th GD=0 [PC G0 is the output sec GD=1, G1 is the output sec B[1]: SM Change si SM=0 [PC G0, G1, Gi interlaced SM=1,	on [POR] aning sequence is canning of the canning	out Gate butput chaic G0,G1, G butput chaic G1, G0, C	nnel, gate 2, G3, nnel, gate 63, G2,
0 0	0 1	03	0 0	0 0	0 0	0 A4	0 A3	0 A ₂	1 A1	1 Ao	Gate Driving voltage Control	B[0]: TB TB = 0 [P0 TB = 1, so Set Gate of A[4:0] = 00 VGH settin A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h 09h 0Ah 0Bh 0Ch	OR], scan can from 0 driving vo 0h [POR]	from G0 G199 to G	to G199 0.

RWW Dick Hox DT D6 D5 D4 D3 D2 D1 D0 Command Description	Com	man	d Tal	ble											
O O O O O O O O O O					D6	D5	D4	D3	D2	D1	D0	Comn	nand		Description
O												_		voltage	
0	-		5 T	-			_	_	-	-	_			· onago	A[7:0] = 41h [POR], VSH1 at 15V
O	_						_		_	_		-			B[7:0] = A8h [POR], VSH2 at 5V.
A[7] 6[7] = 1,		-			_	_	-	_	<u> </u>	_	_	-			
VSH1/VSH2 voltage setting from SV voltage setting for State setting from SV voltage sett		1	- 1	U/	C 6	05	U 4	U 3							
To Box T				/oltac	le se	ttina t	from	2 4V					e settina	from 9V	
Seh 2.4 AFI 6.7 20 9 3Ch 14 20 14 20 20 6 6 20 6 20 6 20 6 20 6 20 6 20 6 20 20				onag	000	9						· romag	o ootanig		volume in our control of the control
SFR 2.5 80h 5.8 20h 9.4 30h 14.2 14.4 14.6 20h 27 28.8 28h 6.1 27h 9.8 40h 14.8 15.6 27h 15.2 28h 10.2 42h 15.2 28h 10.2 42h 15.2 28h 10.8 48h 15.6 28h 10.8 48h 15.6 28h 10.8 48h 15.6 28h 10.8 48h 15.8 28h 10.8 48h 15.8 28h 10.8 48h 15.8 28h 10.8 48h 15.8 28h 10.8 48h 10.8 28h 10.8			_		_		_				VS				-[]
Sept			_		_				-						7 H
9th 2.7 82h 6 85h 6.1 26h 9.6 35h 14.6 14.5 14.6 15.6 35h 35		90h		2.6	В	1h	5	.9		25h		9.4	3Eh	14.4	
Sub 2 9			_		-		_		-		+				
Son 3.1 Bish 6.4 Son 5.4 Son 5.2 Son 5.5 Son			-		-		_								
99h 3.2 87h 6.5 97h 3.3 89h 6.6 6.7 99h 3.3 89h 6.7 99h 3.5 8Ah 6.5 22h 11.2 47h 16.2 29h 11.4 49h 16.8 12h 49h 16.9 99h 3.7 8Ch 7 99h 3.8 89h 7.1 99h 3.9 8Eh 7.2 99h 3.9 8Eh 7.2 99h 4.1 Coh 7.4 Anh 4.2 Crh 7.5 Arth 4.3 Czh 7.6 Arth 4.3 Czh 7.6 Arth 4.3 Czh 7.6 Arth 4.3 Czh 7.6 Arth 4.5 Crh 7.5 Arth 4.9 Coh 8.1 Arth 4.5 Crh 7.5 Arth 4.9 Coh 8.3 Arth 4.5 Crh 7.5 Arth 4.9 Coh 8.3 Arth 4.5 Crh 7.5 Arth			_		-		_				Ŧ				
Section Sect	_		_		_		_		$\mid \mid$		+				
Secondary Seco		97h		3.3	В	8h	6	.6		2Ch	\perp	10.8	45h	15.8	
Second S	_		_		_		_		$ \mid$		+				
Secondary Seco			_		_		6	.9							
Solid Soli	-		_		-		_				\perp				
SEh			_		-		_		-		_				
A0h	_		_		-		_			33h		12.2			
A1h	_		_		-		_		-		_				7
A2h	_		_		_		_				+				
A4h	_		_		_		_								
Ash	_		_		_		_		-		+				
A8h 5 C8h 8.2 A8h 5 C8h 8.3 A8h 5 C8h 8.5 A8h 5 C8h 8.5 A8h 5.3 CCh 8.6 ACh 5.4 CDh 8.7 A6h 5.6 Other NA O O O O O O O O O	_		_		_		_				\perp				
A8h 5 C9h 8.3 A8h 5.1 CAh 8.4 A8h 5.2 CBh 8.5 A8h 5.3 CCh 8.6 A8h 5.3 CCh 8.6 ACh 5.4 CDh 8.7 ADh 5.5 CEh 8.8 AEh 5.6 Other NA O	_		_		_		_			3Bh		13.8			
AAh			_		-		_								
ABh 5.3 CCh 8.6 ACh 5.4 CDh 8.7 ADh 5.5 CEh 8.8 AEh 5.6 Other NA	_		_		_		_								
ADh	_		_		_		_								Other NA
O			_		_		_								
0 0	_		_		_		_								
OTP Program OTP Program The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. O O O O O O O O O O O O O O O O O O O	[1												
OTP Program OTP Program The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. O O O O O O O O O O O O O O O O O O O															
OTP Program OTP Program The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. O O O O O O O O O O O O O O O O O O O	0	0	08	0	0	0	0	1	0	0	0	Initial	Code Set	tina	Program Initial Code Setting
The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. O O O O O O O O O						Ĩ.		100						.5	
BUSY pad will output high during operation.															
0 0 09 0 0 0 1 0 0 1 Write Register for Initial Code Setting Write Register for Initial Selection Write Register for Initial Code Setting 0 1 A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀ 0 1 B ₇ B ₆ B ₅ B ₄ B ₃ B ₂ B ₁ B ₀ 0 1 C ₇ C ₆ C ₅ C ₄ C ₃ C ₂ C ₁ C ₀ 0 1 D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ Read Register for Initial Read Register for Init															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											L				-P
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	09	0	0	0	0	1	0	0	1	Write	Register t	for Initial	Write Register for Initial Code Setting
0 1 B ₇ B ₆ B ₅ B ₄ B ₃ B ₂ B ₁ B ₀ 0 1 C ₇ C ₆ C ₅ C ₄ C ₃ C ₂ C ₁ C ₀ 0 1 D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ 0 0 0 0 0 1 0 1 0 Read Register for Initial Read Regi	1000	1			A ₆		A ₄	770	A2	A ₁					Selection
0 1 C ₇ C ₆ C ₅ C ₄ C ₃ C ₂ C ₁ C ₀ <						1000		0.00		1000					
0 1 D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ 0 0 0 0 0 0 1 0 1 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>1</td> <td></td> <td></td> <td></td>										-	-	1			
0 0 0A 0 0 0 0 1 0 1 0 Read Register for Initial Read Register for Initial Code Setting					-	100.000	100	200000		100000		-			Code Setting
		,		0/	D 6	٥٥	J4	D3	<i>U</i> 2	101	00				
	0	0	۸۸	0	0	0	0	1	0	1	0	Dood	Pegistor	for Initial	Pead Pegister for Initial Code Setting
	0	0	UA	0	U	U	U		0	'	0			ioi iiillidi	Thead hegister for initial Code Setting

Com	man	d Tal	ole				11190	117	25311	100	180	
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D	Command	Description
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable with Phase 1, Phase 2 and Phase
0	1		1	A ₆	A ₅	A ₄	Аз	A ₂	A	A	Control	for soft start current and duration setting.
0	1		1	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	_	-	A[7:0] -> Soft start setting for Phase1
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	-	-	_	= 8Bh [POR] B[7:0] -> Soft start setting for Phase2
0	1		0	0	D ₅	D ₄	D ₃	D ₂	-	_	_	= 9Ch [POR]
U	110		0		D5	D4	D3	02		ן ו		C[7:0] -> Soft start setting for Phase3 = 96h [POR]
												D[7:0] -> Duration setting = 0Fh [POR]
												Bit Description of each byte: A[6:0] / B[6:0] / C[6:0]:
												Bit[6:4] Driving Strength Selection
												000 1(Weakest)
												001 2
												010 3
												011 4
												100 5
												101 6
												110 7
												111 8(Strongest)
												Bit[3:0] Min Off Time Setting of GDR
												0000 NA
												0011
												0100 2.6
												0101 3.2
												0110 3.9
												0111 4.6
												1000 5.4
												1001 6.3
												1010 7.3
												1011 8.4
												1100 9.8
												1101 11.5
												1110 13.8
												1111 16.5
												D[5:0]: duration setting of phase D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2
												D[1:0]: duration setting of phase 1 Duration of Phase
												Bit[1:0] [Approximation]
												00 10ms
												01 20ms
												10 30ms
												11 40ms
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep mode Control:
0	1		0	0	0	0	0	0	A ₁	A ₀		A[1:0]: Description
												00 Normal Mode [POR]
												01 Enter Deep Sleep Mode 1
												11 Enter Deep Sleep Mode 2
												After this command initiated, the chip will
												enter Deep Sleep Mode, BUSY pad will
												keep output high.
												Remark:
												To Exit Deep Sleep mode, User required
												to send HWRESET to the driver

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A ₅	A4	0	A ₂	A ₁	Αο		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1		0	0	0	0	0	A ₂	Aı	Ao	VOI DECOUNT	A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect A[2:0] VCI level 011 2.2V 100 2.3V 101 2.4V 110 2.5V 111 2.6V Other NA The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1	15	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control	A[7:0] = 48h [POR], external temperatrure sensor A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1	.,,	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Write to	A[11:0] = 7FFh [POR]
0	1		A ₃	A ₂	A ₁	A ₀	0	0	0	0	temperature register)	
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Read from	
1	1		A ₃	A ₂	A ₁	A ₀	0	0	0	0	temperature register)	
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.
\vdash			9								I	

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1	10	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control (Write Command	sensor.
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	to External temperature sensor)	A[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	Selisor)	B[7:0] = 00h [POR], C[7:0] = 00h [POR],
												A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sensor starts. BUSY pad will output high during operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence
										100,00		The Display Update Sequence Option is located at R22h. BUSY pad will output high during
												operation. User should not interrupt this operation to avoid corruption of panel images.
_		0.4									5: 1 11 1 0 1 1	
0	1	21	0 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	0 A ₁	1 A ₀	Display Update Control 1	RAM content option for Display Update A[7:0] = 00h [POR] B[7:0] = 00h [POR]
												A[7:4] Red RAM option
												0000 Normal
												0100 Bypass RAM content as 0 1000 Inverse RAM content
												A[3:0] BW RAM option 0000 Normal
												0100 Bypass RAM content as 0
												1000 Inverse RAM content
0	0	11	0	0	0	1 0	0	0 A ₂	0 A ₁	1 A ₀	Data Entry mode setting	Define data entry sequence A[2:0] = 011 [POR]
												A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 —Y decrement, X decrement,
												01 –Y decrement, X increment, 10 –Y increment, X decrement, 11 –Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM.
												are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.

Com	man	d Ta	ble							500			
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Opt	ion:
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control 2	Enable the stage for Master Ac A[7:0]= FFh (POR)	
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal → Enable Analog	C0
												Disable Analog → Disable clock signal	03
												Enable sleek signal	-
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	В9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	С7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal →Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
												Enable clock signal →Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entric written into the BW RAM until a command is written. Address p advance accordingly	another
												For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =	

Com	Command Table											
			D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
											0	,
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during operation.
		20	0	0	4	0	4			4	VOOM Comes Downties	Otablia a tima di satura ana ata dia a MOOM
0	1	29	0	1	0	0	1 A ₃	0 A ₂	0 A ₁	1 A ₀	VCOM Sense Duration	Stabling time between entering VCOM sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
	0	24	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
0	0	2A	U	U	1	J	1		1	0	Program VCOM OTP	The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
0	1	20	0	0	0	0	0	1	0	0	Control	when ACVCOM toggle. Two data bytes
0	1		0	1	1	0	0	0	1	1		D04h and D63h should be set for this command.

Com	man	d Ta	ble												
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Descript	tion		
0	0	2C	0 A ₇	0 A ₆	1 A ₅	0 A ₄	1 A ₃	1 A ₂	0 A ₁	0 A ₀	Write VCOM register	Write VC	Write VCOM register from MCU interfact A[7:0] = 00h [POR]		
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
9						, ,						40h	-1.6	Other	NA
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	egister for	Display (Option:
1	1		A_7	A_6	A_5	A ₄	A ₃	A_2	A ₁	A ₀	Display Option	A [7, O], 1	VCOM OT	D Calaati	
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀			VCOM OT and 0x37,		on
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		(Commi	and oxor,	Dyte A)	
1	1		D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	Do		B[7:0]: '	VCOM Re	gister	
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo		(Comm	and 0x2C)		
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		017.01	017 01 D:		
1	1		1221100	G ₆	10 10 10			1000000	10000				G[7:0]: Dis		
			G ₇		G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		[5 bytes	and 0x37,	Буге Б го	byte F)
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H₀		[O Dytos	2]		
1	1		17	l 6	15	4	l ₃	12	l ₁	lo		H[7:0]~	K[7:0]: Wa	veform V	ersion
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo			and 0x37,	Byte G to	Byte J)
1	1		K ₇	K ₆	K ₅	K ₄	Kз	K ₂	K ₁	Κo		[4 bytes	5]		
0	0	2E	0	0	1	0	1	1	1	0	User ID Read		Byte User		
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0]]~	J[7:0]: Use	rID (R38,	Byte A and
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		Byte J)	[10 bytes]		
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		ā			
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀					
1	1		E ₇		E ₅					E ₀					
100	-			E ₆	2000	E ₄	E ₃	E ₂	E ₁						
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀					
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G₀		1			
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	H₀					
1	1		17	16	15	I 4	l ₃	12	I ₁	lo					
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo					

om	man	d Ta	ble									
		Hex		D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1	21	0	0	A ₅	A ₄	0	0	A ₁	Ao	Status Bit Nedd	A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15
												respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command.
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
١	U	31	U	0	'	'	0	0	U	'	Load WS OTP	Load OTP of Waveloriii Setting
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface [153 bytes], which contains the content of
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		VS[nX-LUTm], TP[nX], RP[n], SR[nXY],
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		and FR[n]
0	1		:	•		:	:	:	:	:		Refer to Session 6.7 WAVEFORM SETTING
U	ı		•				•	·	•			52111110
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command
-					·							For details, please refer to SSD1681 application note.
												BUSY pad will output high during operation.
0	0	25	0	0	4	4	0	4	0	4	CDC Status Bood	CPC Status Bood
1	1	35	0	0	1	1	0	1	0	1 A ₈	CRC Status Read	CRC Status Read A[15:0] is the CRC read out value
1	1		A ₁₅	A ₁₄	A ₁₃	A ₁₂		A ₁₀	A ₉	A ₈	-	
			H 7	A 6	H 5	H4	Аз	A ₂	H1	A 0		

Command Table R/W# D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description												
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during
												operation.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1	01	A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		0: Default [POR] 1: Spare
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		
0	1		D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	D ₀		B[7:0] Display Mode for WS[7:0] C[7:0] Display Mode for WS[15:8]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Εo		D[7:0] Display Mode for WS[13:0]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	F ₀		E[7:0] Display Mode for WS[31:24]
0	1		G ₇	G ₆	G₅ H₅	G ₄	G₃ H₃	G ₂	G₁ H₁	G₀ H₀		F[3:0 Display Mode for WS[35:32] 0: Display Mode 1
0	1		I ₇	I ₆	I ₅	П4 I ₄	I ₃	I ₂	I ₁	Io		1: Display Mode 2
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀		F[6]: PingPong for Display Mode 2
												0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform version.
												Remarks:
												1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not suppor for Display Mode 1
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		Remarks: A[7:0]~J[7:0] can be stored in OTP
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		OTF
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E₁	Eo		
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀		
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	H₀		
0	1		l ₇	l ₆	l ₅	14	l ₃	l ₂	l ₁	I ₀		
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀		
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode
0	1		0	0	0	0	0	0	A ₁	A ₀		A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage
												Remark: User is required to EXACTLY follow the reference code sequences

Com	man	d Ta	ble										
_	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control	-	er waveform for VBD
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀	Bordor Waverenni Gender	A[7:0] = C01	n [POR], set VBD as HIZ. ect VBD option
													Select VBD as
												A[7:6] 00	
												00	GS Transition,
													Defined in A[2] and
												0.4	A[1:0]
												01	Fix Level,
												40	Defined in A[5:4]
												10	VCOM
												11[POR]	HiZ
												Λ [E:/] Eiv I	oval Satting for VPD
													evel Setting for VBD VBD level
												A[5:4]	
												00	VSS
												01	VSH1
												10	VSL
												11	VSH2
												Δ[2] GS Tro	nsition control
													SS Transition control
													follow LUT
													Output VCOM @ RED) Follow LUT
													Ollow LO I
												A [1:0] GS T	ransition setting for VBD
												A[1:0]	VBD Transition
												00	LUT0
												01	LUT1
												10	LUT2
												11	LUT3
													2010
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for L	IT and
		OI		_							End Option (EOI 1)	A[7:0]= 02h	
0	1		A ₇	A ₆	A_5	A ₄	A ₃	A ₂	A ₁	A ₀		22h Norr	
													rce output level keep
													ious output before power off
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM	Ontion
0	1		0	0	0	0	0	0	0	Ao	Trodd To IIV Option	A[0]= 0 [PO	
0	'		U	0	0	U	0	U	U	A ₀			M corresponding to RAM0x24
												1 : Read RA	M corresponding to RAM0x26
												64	
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the	start/end positions of the
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Start / End position		ress in the X direction by an
0	1	-	0	0		B ₄	B ₃	B ₂	B ₁	B ₀		address unit	
U			U	U	B ₅	D4	D 3	D ₂	D1	D 0			
													5:0], XStart, POR = 00h
						7						B[5:0]: XEA	5:0], XEnd, POR = 15h
									-		0.0	0 15 11	
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address		start/end positions of the
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	Start / End position	address unit	ress in the Y direction by an
0		ı T	0	0	0	0	0	0	0	A ₈		address unit	IOI FAIN
0	1		U	U			_	_				le .	
	1			B ₆	-	B ₄		B ₂	B ₁	Bo		A[8:0]: YSAI	8:01, YStart, POR = 000h
0			B ₇		B ₅		B ₃	-					8:0], YStart, POR = 000h 8:0], YEnd, POR = 127h

/ ₩#	D/C#	Hex	ble D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	on		
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM for			M for Rec	ular Patter
0	1		A ₇	A ₆	A₅	A4	0	A ₂	A ₁	Ao	Regular Pattern	A[7:0] = 0			
	50											A[7]: The A[6:4]: Ste Step of alt to Gate	ep Height,	POR= 00	
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	200
												010	32	110	200
												011	64	111	200
) on accordir
												to Source			
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	200
												010	32	110	200
												011	64	111	200
												BUSY pac operation.		ut high du	ring
5	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for	Auto Write	B/W RAI	M for Rea	ular Patteri
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	Ao	Regular Pattern	A[7:0] = 0			
	25											to Gate	ep Height, er RAM ir	POR= 00 Y-direction	on accordin
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	200
												010	32	110	200
												011	64	111	200
												A[2:0]: Ste Step of alt to Source A[2:0]			on accordir
												000	8	100	128
												001	16	101	200
												010	32	110	200
												011	64	111	200
															will output
	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initi	al settings	for the R	AM X
)	1		0	0	A ₅	A ₄	Аз	A ₂	A ₁	Ao	counter	address in			
			J	U	رم	A4	A3	~2	A1	A0		A[5:0]: 00			
	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initi	al settings	for the R	AM Y
	1	"	A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	counter	address in			
)	1		0	0	0	0	0	0	0	A ₀	E .	A[8:0]: 00			,
0	0	7F	0	1	1	1	1	1	1	1	NOP		nave any o it can be u emory Wri	effect on t	

7. Electrical Characteristics

7-1. Absolute maximum rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +4.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	° C
Optimal Storage Temp	TSTGo	23±2	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

7-2. Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C

Parameter	Symbol	Conditions	Applica ble pin	Min.	Тур.	Max	Units
Single ground	Vss	-		-	0	-	V
Logic supply voltage	Vcı	-	VCI	2.2	3.0	3.7	V
Core logic voltage	V_{DD}		VDD	1.7	1.8	1.9	V
High level input voltage	V _{IH}	_)	0.8 V _{CI}	-	-	V
Low level input voltage	V _{IL}		-	-	-	0.2 Va	V
High level output voltage	V _{OH}	IOH = - 100uA	-	0.9 VCI	-	-	V
Low level output voltage	Vol	IOL = 100uA	-	-	-	0.1 Va	V
Typical power	P _{TYP}	Va=3.0 V	-	-	4.5	_	mW
Deep sleep mode	P _{STPY}	V _{CI} =3.0 V	-	-	0.003	_	mW
Typical operating current	Iopr_V _{CI}	Va=3.0 V	-	-	1.5	-	mA
Full update time		25 °C	-	-	2	_	sec
Fast update time	_	25 °C	-	-	1.5	-	sec
Partial update time	-	25 °C	-	-	0.26	-	sec
Sleep mode current	Islp_Va	DC/DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	Idslp_Va	DC/DC off No clock No input load Ram data not retain	-	-	1	5	uA

Notes:

- 1) Refresh time: the time it takes for the whole process from the screen change to the screen stabilization.
- 2) The difference between different refresh methods:

Full refresh: The screen will flicker several times during the refresh process;

Fast Refresh: The screen will flash once during the refresh process;

Partial refresh: The screen does not flicker during the refresh process.

Note: During the fast refresh or partial refresh of the electronic paper, it is recommended to add a full-screen refresh after 5 consecutive operations to reduce the accumulation of afterimages on the screen.

The Typical power consumption is measured with following pattern transition: from horizontal 2 gray scale pattern to vertical 2 gray scale pattern. (Note 7-1) The standby power is the consumed power when the panel controller is in standby mode. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by GOOD DISPLAY Vcom is recommended to be set in the range of assigned value \pm 0.1V.

Note 7-1 The Typical power consumption

7-3. Panel AC Characteristics

7-3-1. MCU Interface

7-3-1-1. MCU Interface selection

The module can support 3-wire/4-wire serial peripheral. MCU interface is pin selectable by BS1 shown in Table 7-1.

	Pin Name								
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA			
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA			
3-wire serial peripheral interface (SPI) – 9 bits SPI	Н	RES#	CS#	L	SCL	SDA			

Table 7-1: Interface pins assignment under different MCU interface

Note:(1) L is connected to VSS and H is connected to VDDIO

7-3-1-2. MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 7-2

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	L	L
Write data	1	Data bit	Н	L

Table 7-2: Control pins status of 4-wire SPI

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

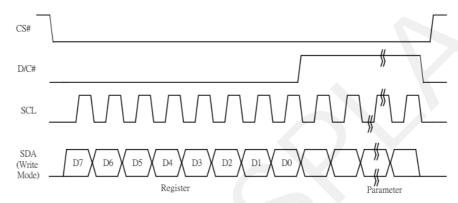


Figure 7-1: Write procedure in 4-wire SPI mode

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS# is pulled low, the first byte sent is command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

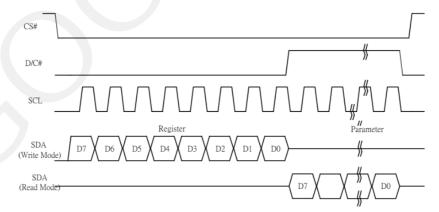


Figure 7-2: Read procedure in 4-wire SPI mode

7-3-1-3. MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 7-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	Tie LOW	L
Write data	1	Data bit	Tie LOW	Ļ

Table 7-3: Control pins status of 3-wire SPI

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal

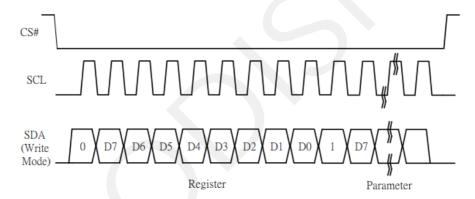


Figure 7-3: Write procedure in 3-wire SPI

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 7-4 shows the read procedure in 3-wire SPI.

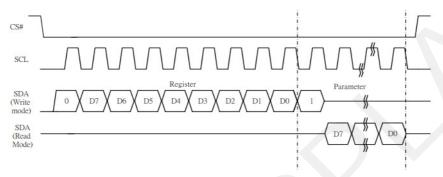


Figure 7-4: Read procedure in 3-wire SPI mode

7-3-2. Serial Peripheral Interface

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Write Mode)	-	-	20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60	-	-	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	65	-	-	ns
t _{сѕнісн}	Time CS# has to remain high between two transfers	100	-	-	ns
t _{sclHigh}	Part of the clock period where SCL has to remain high	25	-	-	ns
tscllow	Part of the clock period where SCL has to remain low	25	-	-	ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10	-	-	ns
t _{SIHLD}	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40	-	-	ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Read Mode)	-	-	2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100	-	-	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	50	-	-	ns
tcsнigh	Time CS# has to remain high between two transfers	250	-	-	ns
t _{scl} eigh	Part of the clock period where SCL has to remain high	180	-	-	ns
tscllow	Part of the clock period where SCL has to remain low	180	-	-	ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	-	50	-	ns
t _{sohld}	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	-	0	-	ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

Table 7-4: Serial Peripheral Interface Timing Characteristics

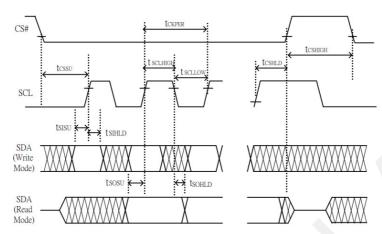
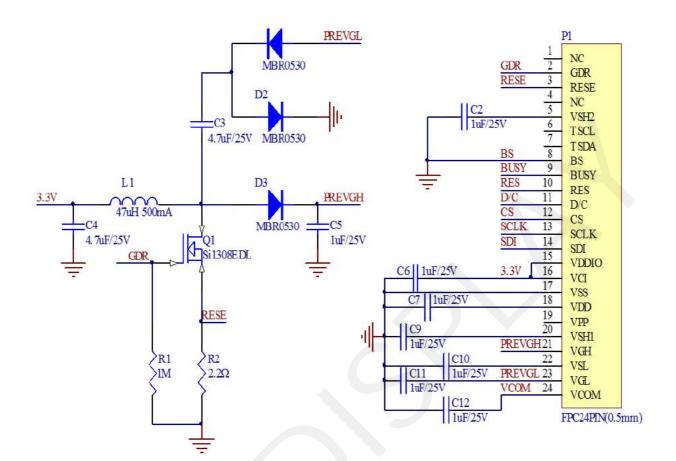


Figure 7-5: SPI timing diagram

8. Optical Specifications

8.1. Specifications


Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	8-1
CR	Contrast Ratio	Indoor	8:1		-		8-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 25 °C		3	-	sec	
Life		Topr		1000000times or 5years			

Notes:

- 8-1. Luminance meter: Eye-One Pro Spectrophotometer.
- 8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.
- 8-3. WS: White state, DS: Dark state

9. Reference Circuit

10. Matched Development Kit

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh black-white E-paper Display, three-color (black, white and red/Yellow) E-paper Display and four-color(black, white, red and yellow) Good Display 's E-paper Display. And it is also added the functions of USB serial port, FLASH chip, font chip, current detection ect.

Development Kit consists of the development board and the pinboard.

Supported development platforms include STM32, ESP32, ESP8266, Arduino UNO, etc. More details, please click to the following links:

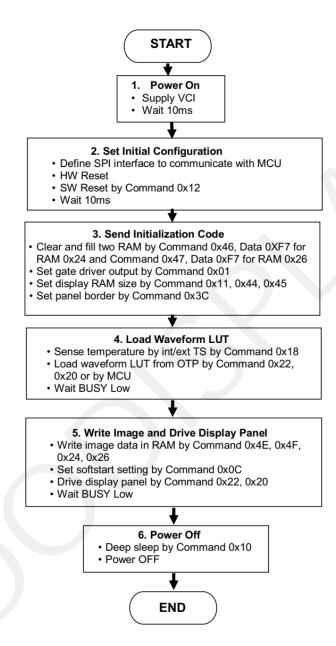
STM32 https://www.good-display.com/product/219.html

ESP32 https://www.good-display.com/product/338.html

ESP8266 https://www.good-display.com/product/220.html

Arduino UNO https://www.good-display.com/product/222.html

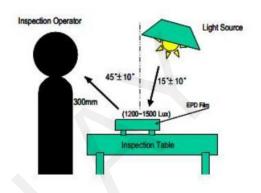
11. Reliability test


NO	Test items	Test condition			
1	Low-Temperature Storage	T = -25 C, 240 h Test in white pattern			
2	High-Temperature Storage	T=70°C, RH=40%, 240h Test in white pattern			
3	High-Temperature Operation	T=50°C, RH=35%, 240h			
4	Low-Temperature Operation	0°С, 240h			
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h			
6	High Temperature, High Humidity Storage	T=50°C, RH=80%, 240h Test in white pattern			
7	Temperature Cycle	1 cycle:[-25° C 30min]→[+70 ° C 30 min]: 50 cycles Test in white pattern			
8	UV exposure Resistance	765W/m ²for 168hrs,40 ℃ Test in white pattern			
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)			

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

12. Typical Operating Sequence

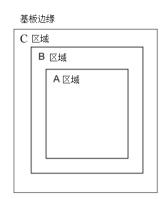
12.1 Normal Operation Flow



13. Inspection method and condition

13.1 Inspection condition

Item	Condition
Illuminance	≥1000 lux
Temperature	22℃ ±3℃
Humidity	45-65 % RoHS
Distance	≥30cm
Angle	<u>+</u> 45 °
Inspection method	By eyes



13.2 Display area

13.2.1 Zone definition:

A Zone: Active areaB Zone: Border zone

C Zone: From B zone edge to panel edge

13.3 General inspection standards for products

13.3.1 Appearance inspection standard

Inspec	tion item	Figure		A zone inspection standard	B/C zone	Inspection method	MAJ/ MIN
Spot defects	Spot defects such as dot, foreign matter, air bubble, and dent etc.	Diameter D=(L+W)/2 (L-length, W-width) Measuring method shown in the figure below D=(L+W)/2	A spec module The distance between the two spots should not be less than 10mm	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Foreign matter D≤1mm Pass	Check by eyes Film gauge	MIN
		Major axis D2	B spec module The distance between the two spots should not be less than 5mm (Outside the AA area, ignore if not serious when checking by eyes)	No affect on display			

Insp	ection item	Figure		A zone inspection standard	B/C zone	Inspection method	MA J/ MI N
Line defects	Line defects such as scratch, hair etc.	L-Length, W-Width, (W/L)<1/4 Judged by line, (W/L)≥1/4 Judged by dot	A spec module The distance between the two lines should not be less than 5mm B spec module The distance between the two lines should not be less than 5mm (Outside the AA area, ignore if not serious when checking by eyes)	7.5"-13.3"Module (Not include 7.5"): L>10mm,N=0 W>0.8mm, N=0 5mm≤L≤10mm, 0.5mm≤W≤0.8mm N≤2 L≤5mm, W≤0.5mm Ignore 4.2"-7.5"Module (Not include 4.2"): L>8mm,N=0 W>0.2mm, N=0 2mm≤L≤8mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore Module below 4.2": L>5mm,N=0 W>0.2mm, N=0 2mm≤L≤5mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore	Ignore	Check by eyes Film gauge	MIN

Inspect	Inspection item Figure		Inspection standard	Inspection method	MA J/ MIN
Panel chipping and crack defects	TFT panel chipping	X the length, Y the width, Z the chipping height, T the thickness of the panel		Check by eyes. Film gauge	MIN
	Crack	玻璃裂纹	Crack at any zone of glass, Not allowed	Check by eyes. Film gauge	MIN
	Burr edge Curl of panel Curl height	+	No exceed the positive and negative deviation of the outline dimensions $X+Y \le 0.2 mm$ Allowed	Calliper	MIN
		H Curl height	Curl height H≤Total panel length 1% Allowed	Check by eyes	MIN

Remarks: The total number of defects in a single piece of A-spec glass is not allowed to exceed 4.

Inspec	tion item	Figure	Inspection standard	Inspecti on method	MAJ / MIN
PS defect	Water proof film		1. Waterproof film damage, wrinkled, open edge, not allowed 2. Exceeding the edge of module(according to the lamination drawing) Not allowed 3. Edge warped exceeds height of technical file, not allowed	Check by eyes	MIN
RTV defect	Adhesive effect		Adhesive height exceeds the display surface, not allowed 1 .Overflow, exceeds the panel side edge, affecting the size, not allowed 2 .No adhesive at panel edge≤1mm, mo exposure of wiring, allowed 3. No adhesive at edge and corner1*1mm, no exposure of wiring, allowed Protection adhesive, coverage width within W≤1.5mm, no break of adhesive, allowed	Check by eyes	MIN
	Adhesive re-fill		Dispensing is uniform, without obvious concave and breaking, bubbling and swell, not higher than the upper surface of the PS, and the diameter of the adhesive re-filling is not more than 8mm, allowed	Check by eyes	MIN
EC defect	Adhesive bubble	防水胶涂布区 封边胶边缘 PS边缘 防水胶涂布区 Border外缘(PPL边缘)	Effective edge sealing area of hot melt products ≥1/2 edge sealing area; Bubble a+b/2≥1/2 effective width, N≤3, spacing≥5mm, allowed No exposure of wiring, allowed	Check by eyes	MIN

Inspection item		Figure	Inspection standard	Inspection method	MAJ/ MIN
EC defect	Adhesive effect		1 .Overflow, exceeds the panel side edge, affecting the size, not allowed 2.No adhesive at panel edge≤1mm, mo exposure of wiring, allowed 3.No adhesive at edge and corner 1*1mm, no exposure of wiring, allowed 4. Adhesive height exceeds the display surface, not allowed	Visual, caliper	MIN
Silver dot adhesive defect	Silver dot adhesive		1. Single silver dot dispensing amount ≥1mm, allowed 2. One of the double silver dot dispensing amount is ≥1mm and the other has adhesive (no reference to 1mm) Allowed	Visual	MIN
defect			Silver dot dispensing residue on the panel ≤0.2mm, allowed	Film gauge	MIN
	FPC wiring		FPC, TCP damage / gold finger peroxidation, adhesive residue, not allowed	Visual	MIJ
FPC defect	FPC golden finger	The height of burr edge of TCP punching surface ≥ 0.4mm, not allowed	Caliper	MIN	
	FPC damage/cr ease		Damage and breaking, not allowed Crease does not affect the electrical performance display, allowed	Check by eyes	MIN

Inspection item		Figure	Inspection standard	Inspection method	MAJ/ MIN
Protective	Protective	Scratch and crease on the surface but no affe	ct to protection function, allowed	Check by eyes	MIN
film defect	film	Adhesive at edge L≤5mm, W≤0.5mm, N=	2, no entering into viewing area	Check by eyes	MIN
Stain defect	Stain	If stain can be normally wiped clean by > 99	If stain can be normally wiped clean by > 99% alcohol, allowed		
Pull tab defect	Pull tab	The position and direction meet the document requirements, and ensure that the protective film can be pulled off.		Check by eyes/ Manual pulling	MIN
Shading tape defect	Shading tape	Tilt≤10°, flat without warping, completely co	Tilt≤10°, flat without warping, completely covering the IC.		
Stiffener	Stiffener	Flat without warping, Exceeding the left and right edges of the FPC is not allowed. Left and right can be less than 0.5mm from FPC edge		Check by eyes	MIN
Label	Label/ Spraying code	The content meets the requirements of the work sheet. The attaching position meets the requirements of the technical documents.		Check by eyes	MIN

Remarks: The definition of other appearance B spec products, no affect to the display, and no entering into the viewing area.

14. Handling, Safety and Environmental Requirements

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care.

Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status

Product specification | The data sheet contains final product specifications.

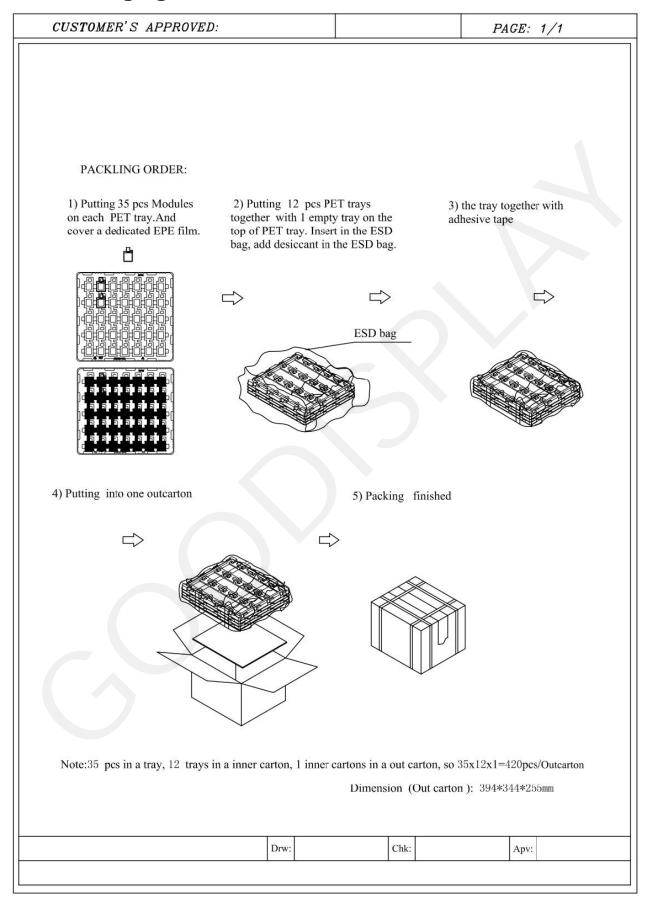
Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134).

Stress above one or more of the limiting values may cause permanent damage to the device.

These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information


Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification

RoHS

15. Packaging

16. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL / EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.

https://www.good-display.com/news/80.html